1
|
Jani M, Sapara KK, Dharajiya D, Patel AK, Joshi C. Isolation, Expression, and Characterization of Potato (Solanum tuberosum) GH Family 17 β-1,3-Glucanase (Stglu) for Exploring its Potential as an Antifungal Agent. Protein Expr Purif 2024; 228:106658. [PMID: 39742904 DOI: 10.1016/j.pep.2024.106658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Plant glucanases, including potato glucanase, are pivotal in biological processes such as cell growth, development, and defense against pathogens. These enzymes hold substantial promises in biotechnological applications, especially genetic engineering for enhancing crop disease resistance and stress tolerance. In this study, from Solanum tuberosum, glycosyl hydrolases family 17 (GH-17) β-1,3-glucanase (Stglu) was cloned, expressed, characterized and its antifungal activity was evaluated. The gene was isolated from infected potato plants and cloned into the pDrive and subsequently into the pET32a (+) protein expression vector. Sequence analysis revealed a 1044 bp open reading frame encoding a 347 amino acid protein with an anticipated molecular weight of 38 kDa and a signature motif (-IEIIVSESGWPSEG-) of the GH-17 family. The recombinant β-1,3-glucanase (Stglu) protein was expressed in E. coli Rosetta-gami 2 (DE3) cells. After recovery from inclusion bodies using urea buffer solubilization and refolding by dialysis, expression of Stglu protein was confirmed by Western blot analysis using an anti-His antibody. Enzymatic assays were performed to characterize β-1,3-glucanase activity which showed its maximum activity at pH 7.0 and 37°C. Plate assays for substrate specificity showed that the enzyme hydrolyzed azo-barley β-glucan and laminarin. The metal ions strongly affected the enzyme's activity; Ca2+ acted as a weak activator. Plate assays further indicated the antifungal activity of Stglu against the plant pathogen Fusarium solani, showing a biotechnological potential tool in controlling fungal pathogenicity in crop plants.
Collapse
Affiliation(s)
- Mansi Jani
- Gujarat Biotechnology Research Centre, Gandhinagar - 382011, Gujarat, India.
| | - Komal K Sapara
- Gujarat Biotechnology Research Centre, Gandhinagar - 382011, Gujarat, India.
| | - Darshan Dharajiya
- Gujarat Biotechnology Research Centre, Gandhinagar - 382011, Gujarat, India.
| | - Amrutlal K Patel
- Gujarat Biotechnology Research Centre, Gandhinagar - 382011, Gujarat, India.
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar - 382011, Gujarat, India.
| |
Collapse
|
2
|
Wei S, Yong B, Jiang H, An Z, Wang Y, Li B, Yang C, Zhu W, Chen Q, He C. A loss-of-function mutant allele of a glycosyl hydrolase gene has been co-opted for seed weight control during soybean domestication. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2469-2489. [PMID: 37635359 DOI: 10.1111/jipb.13559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
The resultant DNA from loss-of-function mutation can be recruited in biological evolution and development. Here, we present such a rare and potential case of "to gain by loss" as a neomorphic mutation during soybean domestication for increasing seed weight. Using a population derived from a chromosome segment substitution line of Glycine max (SN14) and Glycine soja (ZYD06), a quantitative trait locus (QTL) of 100-seed weight (qHSW) was mapped on chromosome 11, corresponding to a truncated β-1, 3-glucosidase (βGlu) gene. The novel gene hsw results from a 14-bp deletion, causing a frameshift mutation and a premature stop codon in the βGlu. In contrast to HSW, the hsw completely lost βGlu activity and function but acquired a novel function to promote cell expansion, thus increasing seed weight. Overexpressing hsw instead of HSW produced large soybean seeds, and surprisingly, truncating hsw via gene editing further increased the seed size. We further found that the core 21-aa peptide of hsw and its variants acted as a promoter of seed size. Transcriptomic variation in these transgenic soybean lines substantiated the integration hsw into cell and seed size control. Moreover, the hsw allele underwent selection and expansion during soybean domestication and improvement. Our work cloned a likely domesticated QTL controlling soybean seed weight, revealed a novel genetic variation and mechanism in soybean domestication, and provided new insight into crop domestication and breeding, and plant evolution.
Collapse
Affiliation(s)
- Siming Wei
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Yong
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongwei Jiang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
- Jilin Academy of Agricultural Sciences, Changchun, 130022, China
| | - Zhenghong An
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Bingbing Li
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ce Yang
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiwei Zhu
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Chaoying He
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
3
|
Scafati V, Troilo F, Ponziani S, Giovannoni M, Scortica A, Pontiggia D, Angelucci F, Di Matteo A, Mattei B, Benedetti M. Characterization of two 1,3-β-glucan-modifying enzymes from Penicillium sumatraense reveals new insights into 1,3-β-glucan metabolism of fungal saprotrophs. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:138. [PMID: 36510318 PMCID: PMC9745967 DOI: 10.1186/s13068-022-02233-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND 1,3-β-glucan is a polysaccharide widely distributed in the cell wall of several phylogenetically distant organisms, such as bacteria, fungi, plants and microalgae. The presence of highly active 1,3-β-glucanases in fungi evokes the biological question on how these organisms can efficiently metabolize exogenous sources of 1,3-β-glucan without incurring in autolysis. RESULTS To elucidate the molecular mechanisms at the basis of 1,3-β-glucan metabolism in fungal saprotrophs, the putative exo-1,3-β-glucanase G9376 and a truncated form of the putative glucan endo-1,3-β-glucosidase (ΔG7048) from Penicillium sumatraense AQ67100 were heterologously expressed in Pichia pastoris and characterized both in terms of activity and structure. G9376 efficiently converted laminarin and 1,3-β-glucan oligomers into glucose by acting as an exo-glycosidase, whereas G7048 displayed a 1,3-β-transglucanase/branching activity toward 1,3-β-glucan oligomers with a degree of polymerization higher than 5, making these oligomers more recalcitrant to the hydrolysis acted by exo-1,3-β-glucanase G9376. The X-ray crystallographic structure of the catalytic domain of G7048, solved at 1.9 Å of resolution, consists of a (β/α)8 TIM-barrel fold characteristic of all the GH17 family members. The catalytic site is in a V-shaped cleft containing the two conserved catalytic glutamic residues. Molecular features compatible with the activity of G7048 as 1,3-β-transglucanase are discussed. CONCLUSIONS The antagonizing activity between ΔG7048 and G9376 indicates how opportunistic fungi belonging to Penicillium genus can feed on substrates similar for composition and structure to their own cell wall without incurring in a self-deleterious autohydrolysis.
Collapse
Affiliation(s)
- Valentina Scafati
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesca Troilo
- grid.5326.20000 0001 1940 4177Institute of Molecular Biology and Pathology, CNR, P.Le Aldo Moro 5, 00185 Rome, Italy
| | - Sara Ponziani
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Moira Giovannoni
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Anna Scortica
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Daniela Pontiggia
- grid.7841.aDepartment of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Angelucci
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Adele Di Matteo
- grid.5326.20000 0001 1940 4177Institute of Molecular Biology and Pathology, CNR, P.Le Aldo Moro 5, 00185 Rome, Italy
| | - Benedetta Mattei
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Manuel Benedetti
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
4
|
Caseiro C, Dias JNR, de Andrade Fontes CMG, Bule P. From Cancer Therapy to Winemaking: The Molecular Structure and Applications of β-Glucans and β-1, 3-Glucanases. Int J Mol Sci 2022; 23:3156. [PMID: 35328577 PMCID: PMC8949617 DOI: 10.3390/ijms23063156] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
β-glucans are a diverse group of polysaccharides composed of β-1,3 or β-(1,3-1,4) linked glucose monomers. They are mainly synthesized by fungi, plants, seaweed and bacteria, where they carry out structural, protective and energy storage roles. Because of their unique physicochemical properties, they have important applications in several industrial, biomedical and biotechnological processes. β-glucans are also major bioactive molecules with marked immunomodulatory and metabolic properties. As such, they have been the focus of many studies attesting to their ability to, among other roles, fight cancer, reduce the risk of cardiovascular diseases and control diabetes. The physicochemical and functional profiles of β-glucans are deeply influenced by their molecular structure. This structure governs β-glucan interaction with multiple β-glucan binding proteins, triggering myriad biological responses. It is then imperative to understand the structural properties of β-glucans to fully reveal their biological roles and potential applications. The deconstruction of β-glucans is a result of β-glucanase activity. In addition to being invaluable tools for the study of β-glucans, these enzymes have applications in numerous biotechnological and industrial processes, both alone and in conjunction with their natural substrates. Here, we review potential applications for β-glucans and β-glucanases, and explore how their functionalities are dictated by their structure.
Collapse
Affiliation(s)
- Catarina Caseiro
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Joana Nunes Ribeiro Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | | | - Pedro Bule
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
5
|
Hormonal and transcriptional analyses provides new insights into the molecular mechanisms underlying root thickening and isoflavonoid biosynthesis in Callerya speciosa (Champ. ex Benth.) Schot. Sci Rep 2021; 11:9. [PMID: 33420059 PMCID: PMC7794344 DOI: 10.1038/s41598-020-76633-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/27/2020] [Indexed: 01/26/2023] Open
Abstract
Callerya speciosa (Champ. ex Benth.) Schot is a traditional Chinese medicine characterized by tuberous roots as the main organ of isoflavonoid accumulation. Root thickening and isoflavonoid accumulation are two major factors for yield and quality of C. speciosa. However, the underlying mechanisms of root thickening and isoflavonoid biosynthesis have not yet been elucidated. Here, integrated morphological, hormonal and transcriptomic analyses of C. speciosa tuberous roots at four different ages (6, 12, 18, 30 months after germination) were performed. The growth cycle of C. speciosa could be divided into three stages: initiation, rapid-thickening and stable-thickening stage, which cued by the activity of vascular cambia. Endogenous changes in phytohormones were associated with developmental changes during root thickening. Jasmonic acid might be linked to the initial development of tuberous roots. Abscisic acid seemed to be essential for tuber maturation, whereas IAA, cis-zeatin and gibberellin 3 were considered essential for rapid thickening of tuberous roots. A total of 4337 differentially expressed genes (DEGs) were identified during root thickening, including 15 DEGs participated in isoflavonoid biosynthesis, and 153 DEGs involved in starch/sucrose metabolism, hormonal signaling, transcriptional regulation and cell wall metabolism. A hypothetical model of genetic regulation associated with root thickening and isoflavonoid biosynthesis in C. speciosa is proposed, which will help in understanding the underlying mechanisms of tuberous root formation and isoflavonoid biosynthesis.
Collapse
|
6
|
Loop 3 of Fungal Endoglucanases of Glycoside Hydrolase Family 12 Modulates Catalytic Efficiency. Appl Environ Microbiol 2017; 83:AEM.03123-16. [PMID: 28039140 DOI: 10.1128/aem.03123-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 12/28/2016] [Indexed: 01/25/2023] Open
Abstract
Glycoside hydrolase (GH) family 12 comprises enzymes with a wide range of activities critical for the degradation of lignocellulose. However, the important roles of the loop regions of GH12 enzymes in substrate specificity and catalytic efficiency remain poorly understood. This study examined how the loop 3 region affects the enzymatic properties of GH12 glucanases using NfEG12A from Neosartorya fischeri P1 and EG (PDB 1KS4) from Aspergillus niger Acidophilic and thermophilic NfEG12A had the highest catalytic efficiency (kcat/Km , 3,001 and 263 ml/mg/s toward lichenin and carboxymethyl cellulose sodium [CMC-Na], respectively) known so far. Based on the multiple-sequence alignment and homology modeling, two specific sequences (FN and STTQA) were identified in the loop 3 region of GH12 endoglucanases from fungi. To determine their functions, these sequences were introduced into NfEG12A, or the counterpart sequence STTQA was removed from EG. These modifications had no effects on the optimal pH and temperature or substrate specificity but changed the catalytic efficiency (kcat/Km ) of these enzymes (in descending order, NfEG12A [100%], NfEG12A-FN [140%], and NfEG12A-STTQA [190%]; EG [100%] and EGΔSTTQA [41%]). Molecular docking and dynamic simulation analyses revealed that the longer loop 3 in GH12 may strengthen the hydrogen-bond interactions between the substrate and protein, thereby increasing the turnover rate (kcat). This study provides a new insight to understand the vital roles of loop 3 for GH12 endoglucanases in catalysis.IMPORTANCE Loop structures play critical roles in the substrate specificity and catalytic hydrolysis of GH12 enzymes. Three typical loops exist in these enzymes. Loops 1 and 2 are recognized as the catalytic loops and are closely related to the substrate specificity and catalytic efficiency. Loop 3 locates in the -1 or +1 subsite and varies a lot in amino acid composition, which may play a role in catalysis. In this study, two GH12 glucanases, NfEG12A and EG, which were mutated by introducing or deleting partial loop 3 sequences FN and/or STTQA, were selected to identify the function of loop 3. It revealed that the longer loop 3 of GH12 glucanases may strengthen the hydrogen network interactions between the substrate and protein, consequently increasing the turnover rate (kcat). This study proposes a strategy to increase the catalytic efficiency of GH12 glucanases by improving the hydrogen network between substrates and catalytic loops.
Collapse
|
7
|
Murphy JR, Donini S, Kappock TJ. An active site-tail interaction in the structure of hexahistidine-tagged Thermoplasma acidophilum citrate synthase. Acta Crystallogr F Struct Biol Commun 2015; 71:1292-9. [PMID: 26457521 PMCID: PMC4601594 DOI: 10.1107/s2053230x15015939] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/25/2015] [Indexed: 11/29/2022] Open
Abstract
Citrate synthase (CS) plays a central metabolic role in aerobes and many other organisms. The CS reaction comprises two half-reactions: a Claisen aldol condensation of acetyl-CoA (AcCoA) and oxaloacetate (OAA) that forms citryl-CoA (CitCoA), and CitCoA hydrolysis. Protein conformational changes that `close' the active site play an important role in the assembly of a catalytically competent condensation active site. CS from the thermoacidophile Thermoplasma acidophilum (TpCS) possesses an endogenous Trp fluorophore that can be used to monitor the condensation reaction. The 2.2 Å resolution crystal structure of TpCS fused to a C-terminal hexahistidine tag (TpCSH6) reported here is an `open' structure that, when compared with several liganded TpCS structures, helps to define a complete path for active-site closure. One active site in each dimer binds a neighboring His tag, the first nonsubstrate ligand known to occupy both the AcCoA and OAA binding sites. Solution data collectively suggest that this fortuitous interaction is stabilized by the crystalline lattice. As a polar but almost neutral ligand, the active site-tail interaction provides a new starting point for the design of bisubstrate-analog inhibitors of CS.
Collapse
Affiliation(s)
- Jesse R. Murphy
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907-2063, USA
| | - Stefano Donini
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907-2063, USA
| | - T. Joseph Kappock
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907-2063, USA
| |
Collapse
|
8
|
Qin Z, Yan Q, Lei J, Yang S, Jiang Z, Wu S. The first crystal structure of a glycoside hydrolase family 17 β-1,3-glucanosyltransferase displays a unique catalytic cleft. ACTA ACUST UNITED AC 2015; 71:1714-24. [PMID: 26249352 DOI: 10.1107/s1399004715011037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 06/07/2015] [Indexed: 11/10/2022]
Abstract
β-1,3-Glucanosyltransferase (EC 2.4.1.-) plays an important role in the formation of branched glucans, as well as in cell-wall assembly and rearrangement in fungi and yeasts. The crystal structures of a novel glycoside hydrolase (GH) family 17 β-1,3-glucanosyltransferase from Rhizomucor miehei (RmBgt17A) and the complexes of its active-site mutant (E189A) with two substrates were solved at resolutions of 1.30, 2.30 and 2.27 Å, respectively. The overall structure of RmBgt17A had the characteristic (β/α)8 TIM-barrel fold. The structures of RmBgt17A and other GH family 17 members were compared: it was found that a conserved subdomain located in the region near helix α6 and part of the catalytic cleft in other GH family 17 members was absent in RmBgt17A. Instead, four amino-acid residues exposed to the surface of the enzyme (Tyr135, Tyr136, Glu158 and His172) were found in the reducing terminus of subsite +2 of RmBgt17A, hindering access to the catalytic cleft. This distinct region of RmBgt17A makes its catalytic cleft shorter than those of other reported GH family 17 enzymes. The complex structures also illustrated that RmBgt17A can only provide subsites -3 to +2. This structural evidence provides a clear explanation of the catalytic mode of RmBgt17A, in which laminaribiose is released from the reducing end of linear β-1,3-glucan and the remaining glucan is transferred to the end of another β-1,3-glucan acceptor. The first crystal structure of a GH family 17 β-1,3-glucanosyltransferase may be useful in studies of the catalytic mechanism of GH family 17 proteins, and provides a basis for further enzymatic engineering or antifungal drug screening.
Collapse
Affiliation(s)
- Zhen Qin
- College of Food Science and Nutritional Engineering, Research and Innovation Center of Food Nutrition and Human Health (Beijing), China Agricultural University, Beijing 100083, People's Republic of China
| | - Qiaojuan Yan
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | - Jian Lei
- College of Food Science and Nutritional Engineering, Research and Innovation Center of Food Nutrition and Human Health (Beijing), China Agricultural University, Beijing 100083, People's Republic of China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, Research and Innovation Center of Food Nutrition and Human Health (Beijing), China Agricultural University, Beijing 100083, People's Republic of China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, Research and Innovation Center of Food Nutrition and Human Health (Beijing), China Agricultural University, Beijing 100083, People's Republic of China
| | - Shiwang Wu
- College of Food Science and Nutritional Engineering, Research and Innovation Center of Food Nutrition and Human Health (Beijing), China Agricultural University, Beijing 100083, People's Republic of China
| |
Collapse
|
9
|
Torres M, Palomares O, Quiralte J, Pauli G, Rodríguez R, Villalba M. An Enzymatically Active β-1,3-Glucanase from Ash Pollen with Allergenic Properties: A Particular Member in the Oleaceae Family. PLoS One 2015; 10:e0133066. [PMID: 26177095 PMCID: PMC4503641 DOI: 10.1371/journal.pone.0133066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/22/2015] [Indexed: 11/18/2022] Open
Abstract
Endo-β-1,3-glucanases are widespread enzymes with glycosyl hydrolitic activity involved in carbohydrate remodelling during the germination and pollen tube growth. Although members of this protein family with allergenic activity have been reported, their effective contribution to allergy is little known. In this work, we identified Fra e 9 as a novel allergenic β-1,3-glucanase from ash pollen. We produced the catalytic and carbohydrate-binding domains as two independent recombinant proteins and characterized them from structural, biochemical and immunological point of view in comparison to their counterparts from olive pollen. We showed that despite having significant differences in biochemical activity Fra e 9 and Ole e 9 display similar IgE-binding capacity, suggesting that β-1,3-glucanases represent an heterogeneous family that could display intrinsic allergenic capacity. Specific cDNA encoding Fra e 9 was cloned and sequenced. The full-length cDNA encoded a polypeptide chain of 461 amino acids containing a signal peptide of 29 residues, leading to a mature protein of 47760.2 Da and a pI of 8.66. An N-terminal catalytic domain and a C-terminal carbohydrate-binding module are the components of this enzyme. Despite the phylogenetic proximity to the olive pollen β-1,3-glucanase, Ole e 9, there is only a 39% identity between both sequences. The N- and C-terminal domains have been produced as independent recombinant proteins in Escherichia coli and Pichia pastoris, respectively. Although a low or null enzymatic activity has been associated to long β-1,3-glucanases, the recombinant N-terminal domain has 200-fold higher hydrolytic activity on laminarin than reported for Ole e 9. The C-terminal domain of Fra e 9, a cysteine-rich compact structure, is able to bind laminarin. Both molecules retain comparable IgE-binding capacity when assayed with allergic sera. In summary, the structural and functional comparison between these two closely phylogenetic related enzymes provides novel insights into the complexity of β-1,3-glucanases, representing a heterogeneous protein family with intrinsic allergenic capacity.
Collapse
Affiliation(s)
- María Torres
- Biochemistry and Molecular Biology I Department Complutense, University of Madrid, Madrid, Spain
| | - Oscar Palomares
- Biochemistry and Molecular Biology I Department Complutense, University of Madrid, Madrid, Spain
| | - Joaquín Quiralte
- Virgen del Rocío University, Hospital of Seville, Seville, Spain
| | - Gabrielle Pauli
- Hôpital Lyautey, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | - Rosalía Rodríguez
- Biochemistry and Molecular Biology I Department Complutense, University of Madrid, Madrid, Spain
| | - Mayte Villalba
- Biochemistry and Molecular Biology I Department Complutense, University of Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
10
|
Zaslona H, Trusek-Holownia A, Radosinski L, Hennig J. Optimization and kinetic characterization of recombinant 1,3-β-glucanase production in Escherichia coli
K-12 strain BL21/pETSD10 - a bioreactor scale study. Lett Appl Microbiol 2015; 61:36-43. [DOI: 10.1111/lam.12419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022]
Affiliation(s)
- H. Zaslona
- Department of Chemistry; Wroclaw University of Technology; Wroclaw Poland
| | - A. Trusek-Holownia
- Department of Chemistry; Wroclaw University of Technology; Wroclaw Poland
| | - L. Radosinski
- Department of Chemistry; Wroclaw University of Technology; Wroclaw Poland
| | | |
Collapse
|
11
|
Atomic resolution structure of a protein prepared by non-enzymatic His-tag removal. Crystallographic and NMR study of GmSPI-2 inhibitor. PLoS One 2014; 9:e106936. [PMID: 25233114 PMCID: PMC4169406 DOI: 10.1371/journal.pone.0106936] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/09/2014] [Indexed: 12/03/2022] Open
Abstract
Purification of suitable quantity of homogenous protein is very often the bottleneck in protein structural studies. Overexpression of a desired gene and attachment of enzymatically cleavable affinity tags to the protein of interest made a breakthrough in this field. Here we describe the structure of Galleria mellonella silk proteinase inhibitor 2 (GmSPI-2) determined both by X-ray diffraction and NMR spectroscopy methods. GmSPI-2 was purified using a new method consisting in non-enzymatic His-tag removal based on a highly specific peptide bond cleavage reaction assisted by Ni(II) ions. The X-ray crystal structure of GmSPI-2 was refined against diffraction data extending to 0.98 Å resolution measured at 100 K using synchrotron radiation. Anisotropic refinement with the removal of stereochemical restraints for the well-ordered parts of the structure converged with R factor of 10.57% and Rfree of 12.91%. The 3D structure of GmSPI-2 protein in solution was solved on the basis of 503 distance constraints, 10 hydrogen bonds and 26 torsion angle restraints. It exhibits good geometry and side-chain packing parameters. The models of the protein structure obtained by X-ray diffraction and NMR spectroscopy are very similar to each other and reveal the same β2αβ fold characteristic for Kazal-family serine proteinase inhibitors.
Collapse
|
12
|
Rodríguez-Romero A, Hernández-Santoyo A, Fuentes-Silva D, Palomares LA, Muñoz-Cruz S, Yépez-Mulia L, Orozco-Martínez S. Structural analysis of the endogenous glycoallergen Hev b 2 (endo-β-1,3-glucanase) from Hevea brasiliensis and its recognition by human basophils. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:329-41. [PMID: 24531467 PMCID: PMC3940204 DOI: 10.1107/s1399004713027673] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/09/2013] [Indexed: 11/10/2022]
Abstract
Endogenous glycosylated Hev b 2 (endo-β-1,3-glucanase) from Hevea brasiliensis is an important latex allergen that is recognized by IgE antibodies from patients who suffer from latex allergy. The carbohydrate moieties of Hev b 2 constitute a potentially important IgE-binding epitope that could be responsible for its cross-reactivity. Here, the structure of the endogenous isoform II of Hev b 2 that exhibits three post-translational modifications, including an N-terminal pyroglutamate and two glycosylation sites at Asn27 and at Asn314, is reported from two crystal polymorphs. These modifications form a patch on the surface of the molecule that is proposed to be one of the binding sites for IgE. A structure is also proposed for the most important N-glycan present in this protein as determined by digestion with specific enzymes. To analyze the role of the carbohydrate moieties in IgE antibody binding and in human basophil activation, the glycoallergen was enzymatically deglycosylated and evaluated. Time-lapse automated video microscopy of basophils stimulated with glycosylated Hev b 2 revealed basophil activation and degranulation. Immunological studies suggested that carbohydrates on Hev b 2 represent an allergenic IgE epitope. In addition, a dimer was found in each asymmetric unit that may reflect a regulatory mechanism of this plant defence protein.
Collapse
Affiliation(s)
- Adela Rodríguez-Romero
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU, 04310 Coyoacán, DF, Mexico
| | - Alejandra Hernández-Santoyo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU, 04310 Coyoacán, DF, Mexico
| | - Deyanira Fuentes-Silva
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU, 04310 Coyoacán, DF, Mexico
| | - Laura A. Palomares
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, MOR, Mexico
| | - Samira Muñoz-Cruz
- UMAE–Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Avenida Cuauhtémoc 330, Colonia Doctores, Mexico, DF, Mexico
| | - Lilian Yépez-Mulia
- UMAE–Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Avenida Cuauhtémoc 330, Colonia Doctores, Mexico, DF, Mexico
| | | |
Collapse
|
13
|
Zhou P, Chen Z, Yan Q, Yang S, Hilgenfeld R, Jiang Z. The structure of a glycoside hydrolase family 81 endo-β-1,3-glucanase. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2027-38. [PMID: 24100321 DOI: 10.1107/s090744491301799x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 06/29/2013] [Indexed: 11/11/2022]
Abstract
Endo-β-1,3-glucanases catalyze the hydrolysis of β-1,3-glycosidic linkages in glucans. They are also responsible for rather diverse physiological functions such as carbon utilization, cell-wall organization and pathogen defence. Glycoside hydrolase (GH) family 81 mainly consists of β-1,3-glucanases from fungi, higher plants and bacteria. A novel GH family 81 β-1,3-glucanase gene (RmLam81A) from Rhizomucor miehei was expressed in Escherichia coli. Purified RmLam81A was crystallized and the structure was determined in two crystal forms (form I-free and form II-Se) at 2.3 and 2.0 Å resolution, respectively. Here, the crystal structure of a member of GH family 81 is reported for the first time. The structure of RmLam81A is greatly different from all endo-β-1,3-glucanase structures available in the Protein Data Bank. The overall structure of the RmLam81A monomer consists of an N-terminal β-sandwich domain, a C-terminal (α/α)6 domain and an additional domain between them. Glu553 and Glu557 are proposed to serve as the proton donor and basic catalyst, respectively, in a single-displacement mechanism. In addition, Tyr386, Tyr482 and Ser554 possibly contribute to both the position or the ionization state of the basic catalyst Glu557. The first crystal structure of a GH family 81 member will be helpful in the study of the GH family 81 proteins and endo-β-1,3-glucanases.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Wlodawer A, Minor W, Dauter Z, Jaskolski M. Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination. FEBS J 2013; 280:5705-36. [PMID: 24034303 DOI: 10.1111/febs.12495] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/12/2013] [Accepted: 08/20/2013] [Indexed: 12/28/2022]
Abstract
The number of macromolecular structures deposited in the Protein Data Bank now approaches 100,000, with the vast majority of them determined by crystallographic methods. Thousands of papers describing such structures have been published in the scientific literature, and 20 Nobel Prizes in chemistry or medicine have been awarded for discoveries based on macromolecular crystallography. New hardware and software tools have made crystallography appear to be an almost routine (but still far from being analytical) technique and many structures are now being determined by scientists with very limited experience in the practical aspects of the field. However, this apparent ease is sometimes illusory and proper procedures need to be followed to maintain high standards of structure quality. In addition, many noncrystallographers may have problems with the critical evaluation and interpretation of structural results published in the scientific literature. The present review provides an outline of the technical aspects of crystallography for less experienced practitioners, as well as information that might be useful for users of macromolecular structures, aiming to show them how to interpret (but not overinterpret) the information present in the coordinate files and in their description. A discussion of the extent of information that can be gleaned from the atomic coordinates of structures solved at different resolution is provided, as well as problems and pitfalls encountered in structure determination and interpretation.
Collapse
Affiliation(s)
- Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, NCI at Frederick, Frederick, MD, USA
| | | | | | | |
Collapse
|
15
|
Wojtkowiak A, Witek K, Hennig J, Jaskolski M. Structures of an active-site mutant of a plant 1,3-β-glucanase in complex with oligosaccharide products of hydrolysis. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 69:52-62. [PMID: 23275163 DOI: 10.1107/s0907444912042175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 10/08/2012] [Indexed: 08/29/2023]
Abstract
Plant endo-1,3-β-glucanases are involved in important physiological processes such as defence mechanisms, cell division and flowering. They hydrolyze (1→3)-β-glucans, with very limited activity towards mixed (1→3,1→4)-β-glucans and branched (1→3,1→6)-β-glucans. Here, crystal structures of the potato (Solanum tuberosum) endo-1,3-β-glucanase GLUB20-2 with the nucleophilic Glu259 residue substituted by alanine (E259A) are reported. Despite this active-site mutation, the protein retained residual endoglucanase activity and when incubated in the crystallization buffer with a linear hexameric substrate derived from (1→3)-β-glucan (laminarahexose) cleaved it in two different ways, generating trisaccharides and tetrasaccharides, as confirmed by mass spectrometry. The trisaccharide (laminaratriose) shows higher binding affinity and was found to fully occupy the -1, -2 and -3 sites of the active-site cleft, even at a low molar excess of the substrate. At elevated substrate concentration the tetrasaccharide molecule (laminaratetrose) also occupies the active site, spanning the opposite sites +1, +2, +3 and +4 of the cleft. These are the first crystal structures of a plant glycoside hydrolase family 17 (GH17) member to reveal the protein-saccharide interactions and were determined at resolutions of 1.68 and 1.55 Å, respectively. The geometry of the active-site cleft clearly precludes any (1→4)-β-glucan topology at the subsites from -3 to +4 and could possibly accommodate β-1,6-branching only at subsites +1 and +2. The glucose units at subsites -1 and -2 interact with highly conserved protein residues. In contrast, subsites -3, +3 and +4 are variable, suggesting that the mode of glucose binding at these sites may vary between different plant endo-1,3-β-glucanases. Low substrate affinity is observed at subsites +1 and +2, as manifested by disorder of the glycosyl units there.
Collapse
Affiliation(s)
- Agnieszka Wojtkowiak
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | | | | | | |
Collapse
|