1
|
Ulyanova V, Nadyrova A, Dudkina E, Kuznetsova A, Ahmetgalieva A, Faizullin D, Surchenko Y, Novopashina D, Zuev Y, Kuznetsov N, Ilinskaya O. Structural and Functional Differences between Homologous Bacterial Ribonucleases. Int J Mol Sci 2022; 23:ijms23031867. [PMID: 35163789 PMCID: PMC8837141 DOI: 10.3390/ijms23031867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Small cationic guanyl-preferring ribonucleases (RNases) produced by the Bacillus species share a similar protein tertiary structure with a high degree of amino acid sequence conservation. However, they form dimers that differ in conformation and stability. Here, we have addressed the issues (1) whether the homologous RNases also have distinctions in catalytic activity towards different RNA substrates and interactions with the inhibitor protein barstar, and (2) whether these differences correlate with structural features of the proteins. Circular dichroism and dynamic light scattering assays revealed distinctions in the structures of homologous RNases. The activity levels of the RNases towards natural RNA substrates, as measured spectrometrically by acid-soluble hydrolysis products, were similar and decreased in the row high-polymeric RNA >>> transport RNA > double-stranded RNA. However, stopped flow kinetic studies on model RNA substrates containing the guanosine residue in a hairpin stem or a loop showed that the cleavage rates of these enzymes were different. Moreover, homologous RNases were inhibited by the barstar with diverse efficiency. Therefore, minor changes in structure elements of homologous proteins have a potential to significantly effect molecule stability and functional activities, such as catalysis or ligand binding.
Collapse
Affiliation(s)
- Vera Ulyanova
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (A.N.); (E.D.); (A.A.); (Y.S.); (O.I.)
- Correspondence:
| | - Alsu Nadyrova
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (A.N.); (E.D.); (A.A.); (Y.S.); (O.I.)
| | - Elena Dudkina
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (A.N.); (E.D.); (A.A.); (Y.S.); (O.I.)
| | - Aleksandra Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.K.); (D.N.); (N.K.)
| | - Albina Ahmetgalieva
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (A.N.); (E.D.); (A.A.); (Y.S.); (O.I.)
| | - Dzhigangir Faizullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (D.F.); (Y.Z.)
| | - Yulia Surchenko
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (A.N.); (E.D.); (A.A.); (Y.S.); (O.I.)
| | - Darya Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.K.); (D.N.); (N.K.)
| | - Yuriy Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (D.F.); (Y.Z.)
| | - Nikita Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.K.); (D.N.); (N.K.)
| | - Olga Ilinskaya
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (A.N.); (E.D.); (A.A.); (Y.S.); (O.I.)
| |
Collapse
|
2
|
Dudkina EV, Ulyanova VV, Ilinskaya ON. Supramolecular Organization As a Factor of Ribonuclease Cytotoxicity. Acta Naturae 2020; 12:24-33. [PMID: 33173594 PMCID: PMC7604891 DOI: 10.32607/actanaturae.11000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/29/2020] [Indexed: 11/28/2022] Open
Abstract
One of the approaches used to eliminate tumor cells is directed destruction/modification of their RNA molecules. In this regard, ribonucleases (RNases) possess a therapeutic potential that remains largely unexplored. It is believed that the biological effects of secreted RNases, namely their antitumor and antiviral properties, derive from their catalytic activity. However, a number of recent studies have challenged the notion that the activity of RNases in the manifestation of selective cytotoxicity towards cancer cells is exclusively an enzymatic one. In this review, we have analyzed available data on the cytotoxic effects of secreted RNases, which are not associated with their catalytic activity, and we have provided evidence that the most important factor in the selective apoptosis-inducing action of RNases is the structural organization of these enzymes, which determines how they interact with cell components. The new idea on the preponderant role of non-catalytic interactions between RNases and cancer cells in the manifestation of selective cytotoxicity will contribute to the development of antitumor RNase-based drugs.
Collapse
Affiliation(s)
- E. V. Dudkina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008 Russia
| | - V. V. Ulyanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008 Russia
| | - O. N. Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008 Russia
| |
Collapse
|
3
|
|
4
|
Ilinskaya O, Ulyanova V, Lisevich I, Dudkina E, Zakharchenko N, Kusova A, Faizullin D, Zuev Y. The Native Monomer of Bacillus Pumilus Ribonuclease Does Not Exist Extracellularly. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4837623. [PMID: 30402481 PMCID: PMC6196983 DOI: 10.1155/2018/4837623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/18/2018] [Indexed: 01/06/2023]
Abstract
Supported by crystallography studies, secreted ribonuclease of Bacillus pumilus (binase) has long been considered to be monomeric in form. Recent evidence obtained using native polyacrylamide gel electrophoresis and size-exclusion chromatography suggests that binase is in fact dimeric. To eliminate ambiguity and contradictions in the data we have measured conformational changes, hypochromic effect, and hydrodynamic radius of binase. The immutability of binase secondary structure upon transition from low to high protein concentration was registered, suggesting the binase dimerization immediately after translocation through the cell membrane and leading to detection of binase dimers only in the culture fluid regardless of ribonuclease concentration. Our results made it necessary to take a fresh look at the binase stability and cytotoxicity towards virus-infected or tumor cells.
Collapse
Affiliation(s)
- Olga Ilinskaya
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia
| | - Vera Ulyanova
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia
| | - Irina Lisevich
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia
| | - Elena Dudkina
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia
| | - Nataliya Zakharchenko
- Kazan Institute of Biochemistry and Biophysics of FRC Kazan Scientific Center of RAS, Kazan 420008, Russia
| | - Alexandra Kusova
- Kazan Institute of Biochemistry and Biophysics of FRC Kazan Scientific Center of RAS, Kazan 420008, Russia
| | - Dzhigangir Faizullin
- Kazan Institute of Biochemistry and Biophysics of FRC Kazan Scientific Center of RAS, Kazan 420008, Russia
| | - Yuriy Zuev
- Kazan Institute of Biochemistry and Biophysics of FRC Kazan Scientific Center of RAS, Kazan 420008, Russia
- Kazan State Power Engineering University, Kazan 420066, Russia
| |
Collapse
|
5
|
High-Throughput Small-Molecule Crystallography at the ‘Belok’ Beamline of the Kurchatov Synchrotron Radiation Source: Transition Metal Complexes with Azomethine Ligands as a Case Study. CRYSTALS 2017. [DOI: 10.3390/cryst7110325] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
|
7
|
Efimova MA, Shah Mahmud R, Zelenikhin PV, Sabirova MI, Kolpakov AI, Ilinskaya ON. Exogenous Bacillus pumilus RNase (binase) suppresses the reproduction of reovirus serotype 1. Mol Biol 2017. [DOI: 10.1134/s0026893316060042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Dudkina E, Kayumov A, Ulyanova V, Ilinskaya O. New insight into secreted ribonuclease structure: binase is a natural dimer. PLoS One 2014; 9:e115818. [PMID: 25551440 PMCID: PMC4281067 DOI: 10.1371/journal.pone.0115818] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/27/2014] [Indexed: 11/18/2022] Open
Abstract
The biological effects of ribonucleases (RNases), such as the control of the blood vessels growth, the toxicity towards tumour cells and antiviral activity, require a detailed explanation. One of the most intriguing properties of RNases which can contribute to their biological effects is the ability to form dimers, which facilitates efficient RNA hydrolysis and the evasion of ribonuclease inhibitor. Dimeric forms of microbial RNase binase secreted by Bacillus pumilus (former B. intermedius) have only been found in crystals to date. Our study is the first report directly confirming the existence of binase dimers in solution and under natural conditions of enzyme biosynthesis and secretion by bacilli. Using different variants of gel electrophoresis, immunoblotting, size-exclusion chromatography and mass-spectrometry, we revealed that binase is a stable natural dimer with high catalytic activity.
Collapse
Affiliation(s)
- Elena Dudkina
- Institute of Fundamental Medicine and Biology, Kazan Federal (Volga-Region) University, Kazan, Russia
- * E-mail:
| | - Airat Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal (Volga-Region) University, Kazan, Russia
| | - Vera Ulyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal (Volga-Region) University, Kazan, Russia
| | - Olga Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal (Volga-Region) University, Kazan, Russia
| |
Collapse
|
9
|
Abstract
Many ribonucleases (RNases) are able to inhibit the reproduction of viruses in infected cell cultures and laboratory animals, but the molecular mechanisms of their antiviral activity remain unclear. The review discusses the well-known RNases that possess established antiviral effects, including both intracellular RNases (RNase L, MCPIP1 protein, and eosinophil-associated RNases) and exogenous RNases (RNase A, BS-RNase, onconase, binase, and synthetic RNases). Attention is paid to two important, but not always obligatory, aspects of molecules of RNases that have antiviral properties, i.e., catalytic activity and ability to dimerize. The hypothetic scheme of virus elimination by exogenous RNases that reflects possible types of interaction of viruses and RNases with a cell is proposed. The evidence for RNases as classical components of immune defense and thus perspective agents for the development of new antiviral therapeutics is proposed.
Collapse
Affiliation(s)
- O. N. Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan, 420008 Russia
| | - R. Shah Mahmud
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan, 420008 Russia
| |
Collapse
|
10
|
Ribonuclease binase decreases destructive changes of the liver and restores its regeneration potential in mouse lung carcinoma model. Biochimie 2014; 101:256-9. [DOI: 10.1016/j.biochi.2014.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 02/13/2014] [Indexed: 11/16/2022]
|