1
|
Thorne RE. Determining biomolecular structures near room temperature using X-ray crystallography: concepts, methods and future optimization. Acta Crystallogr D Struct Biol 2023; 79:78-94. [PMID: 36601809 PMCID: PMC9815097 DOI: 10.1107/s2059798322011652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/04/2022] [Indexed: 01/05/2023] Open
Abstract
For roughly two decades, cryocrystallography has been the overwhelmingly dominant method for determining high-resolution biomolecular structures. Competition from single-particle cryo-electron microscopy and micro-electron diffraction, increased interest in functionally relevant information that may be missing or corrupted in structures determined at cryogenic temperature, and interest in time-resolved studies of the biomolecular response to chemical and optical stimuli have driven renewed interest in data collection at room temperature and, more generally, at temperatures from the protein-solvent glass transition near 200 K to ∼350 K. Fischer has recently reviewed practical methods for room-temperature data collection and analysis [Fischer (2021), Q. Rev. Biophys. 54, e1]. Here, the key advantages and physical principles of, and methods for, crystallographic data collection at noncryogenic temperatures and some factors relevant to interpreting the resulting data are discussed. For room-temperature data collection to realize its potential within the structural biology toolkit, streamlined and standardized methods for delivering crystals prepared in the home laboratory to the synchrotron and for automated handling and data collection, similar to those for cryocrystallography, should be implemented.
Collapse
Affiliation(s)
- Robert E. Thorne
- Physics Department, Cornell University, Ithaca, NY 14853, USA
- MiTeGen LLC, PO Box 3867, Ithaca, NY 14850, USA
| |
Collapse
|
2
|
Schneider DK, Shi W, Andi B, Jakoncic J, Gao Y, Bhogadi DK, Myers SF, Martins B, Skinner JM, Aishima J, Qian K, Bernstein HJ, Lazo EO, Langdon T, Lara J, Shea-McCarthy G, Idir M, Huang L, Chubar O, Sweet RM, Berman LE, McSweeney S, Fuchs MR. FMX - the Frontier Microfocusing Macromolecular Crystallography Beamline at the National Synchrotron Light Source II. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:650-665. [PMID: 33650577 PMCID: PMC7941291 DOI: 10.1107/s1600577520016173] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/11/2020] [Indexed: 05/26/2023]
Abstract
Two new macromolecular crystallography (MX) beamlines at the National Synchrotron Light Source II, FMX and AMX, opened for general user operation in February 2017 [Schneider et al. (2013). J. Phys. Conf. Ser. 425, 012003; Fuchs et al. (2014). J. Phys. Conf. Ser. 493, 012021; Fuchs et al. (2016). AIP Conf. Proc. SRI2015, 1741, 030006]. FMX, the micro-focusing Frontier MX beamline in sector 17-ID-2 at NSLS-II, covers a 5-30 keV photon energy range and delivers a flux of 4.0 × 1012 photons s-1 at 1 Å into a 1 µm × 1.5 µm to 10 µm × 10 µm (V × H) variable focus, expected to reach 5 × 1012 photons s-1 at final storage-ring current. This flux density surpasses most MX beamlines by nearly two orders of magnitude. The high brightness and microbeam capability of FMX are focused on solving difficult crystallographic challenges. The beamline's flexible design supports a wide range of structure determination methods - serial crystallography on micrometre-sized crystals, raster optimization of diffraction from inhomogeneous crystals, high-resolution data collection from large-unit-cell crystals, room-temperature data collection for crystals that are difficult to freeze and for studying conformational dynamics, and fully automated data collection for sample-screening and ligand-binding studies. FMX's high dose rate reduces data collection times for applications like serial crystallography to minutes rather than hours. With associated sample lifetimes as short as a few milliseconds, new rapid sample-delivery methods have been implemented, such as an ultra-high-speed high-precision piezo scanner goniometer [Gao et al. (2018). J. Synchrotron Rad. 25, 1362-1370], new microcrystal-optimized micromesh well sample holders [Guo et al. (2018). IUCrJ, 5, 238-246] and highly viscous media injectors [Weierstall et al. (2014). Nat. Commun. 5, 3309]. The new beamline pushes the frontier of synchrotron crystallography and enables users to determine structures from difficult-to-crystallize targets like membrane proteins, using previously intractable crystals of a few micrometres in size, and to obtain quality structures from irregular larger crystals.
Collapse
Affiliation(s)
| | - Wuxian Shi
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Babak Andi
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jean Jakoncic
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yuan Gao
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Stuart F. Myers
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Bruno Martins
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA
| | - John M. Skinner
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jun Aishima
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kun Qian
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Herbert J. Bernstein
- Ronin Institute for Independent Scholarship, c/o NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Edwin O. Lazo
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Thomas Langdon
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - John Lara
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Mourad Idir
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Lei Huang
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Oleg Chubar
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Robert M. Sweet
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Lonny E. Berman
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sean McSweeney
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Martin R. Fuchs
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
3
|
Dickerson JL, Garman EF. Doses for experiments with microbeams and microcrystals: Monte Carlo simulations in RADDOSE-3D. Protein Sci 2020; 30:8-19. [PMID: 32734633 PMCID: PMC7737758 DOI: 10.1002/pro.3922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/07/2022]
Abstract
Increasingly, microbeams and microcrystals are being used for macromolecular crystallography (MX) experiments at synchrotrons. However, radiation damage remains a major concern since it is a fundamental limiting factor affecting the success of macromolecular structure determination. The rate of radiation damage at cryotemperatures is known to be proportional to the absorbed dose, so to optimize experimental outcomes, accurate dose calculations are required which take into account the physics of the interactions of the crystal constituents. The program RADDOSE‐3D estimates the dose absorbed by samples during MX data collection at synchrotron sources, allowing direct comparison of radiation damage between experiments carried out with different samples and beam parameters. This has aided the study of MX radiation damage and enabled prediction of approximately when it will manifest in diffraction patterns so it can potentially be avoided. However, the probability of photoelectron escape from the sample and entry from the surrounding material has not previously been included in RADDOSE‐3D, leading to potentially inaccurate does estimates for experiments using microbeams or microcrystals. We present an extension to RADDOSE‐3D which performs Monte Carlo simulations of a rotating crystal during MX data collection, taking into account the redistribution of photoelectrons produced both in the sample and the material surrounding the crystal. As well as providing more accurate dose estimates, the Monte Carlo simulations highlight the importance of the size and composition of the surrounding material on the dose and thus the rate of radiation damage to the sample. Minimizing irradiation of the surrounding material or removing it almost completely will be key to extending the lifetime of microcrystals and enhancing the potential benefits of using higher incident X‐ray energies.
Collapse
|
4
|
Storm SLS, Crawshaw AD, Devenish NE, Bolton R, Hall DR, Tews I, Evans G. Measuring energy-dependent photoelectron escape in microcrystals. IUCRJ 2020; 7:129-135. [PMID: 31949913 PMCID: PMC6949606 DOI: 10.1107/s2052252519016178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/02/2019] [Indexed: 05/22/2023]
Abstract
With the increasing trend of using microcrystals and intense microbeams at synchrotron X-ray beamlines, radiation damage becomes a more pressing problem. Theoretical calculations show that the photoelectrons that primarily cause damage can escape microcrystals. This effect would become more pronounced with decreasing crystal size as well as at higher energies. To prove this effect, data from cryocooled lysozyme crystals of dimensions 5 × 3 × 3 and 20 × 8 × 8 µm mounted on cryo-transmission electron microscopy (cryo-TEM) grids were collected at 13.5 and 20.1 keV using a PILATUS CdTe 2M detector, which has a similar quantum efficiency at both energies. Accurate absorbed doses were calculated through the direct measurement of individual crystal sizes using scanning electron microscopy after the experiment and characterization of the X-ray microbeam. The crystal lifetime was then quantified based on the D 1/2 metric. In this first systematic study, a longer crystal lifetime for smaller crystals was observed and crystal lifetime increased at higher X-ray energies, supporting the theoretical predictions of photoelectron escape. The use of detector technologies specifically optimized for data collection at energies above 20 keV allows the theoretically predicted photoelectron escape to be quantified and exploited, guiding future beamline-design choices.
Collapse
Affiliation(s)
- Selina L. S. Storm
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Adam D. Crawshaw
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Nicholas E. Devenish
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Rachel Bolton
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Biological Sciences, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, United Kingdom
| | - David R. Hall
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Ivo Tews
- Biological Sciences, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, United Kingdom
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
5
|
Atakisi H, Conger L, Moreau DW, Thorne RE. Resolution and dose dependence of radiation damage in biomolecular systems. IUCRJ 2019; 6:1040-1053. [PMID: 31709060 PMCID: PMC6830208 DOI: 10.1107/s2052252519008777] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/19/2019] [Indexed: 05/30/2023]
Abstract
The local Fourier-space relation between diffracted intensity I, diffraction wavevector q and dose D, , is key to probing and understanding radiation damage by X-rays and energetic particles in both diffraction and imaging experiments. The models used in protein crystallography for the last 50 years provide good fits to experimental I(q) versus nominal dose data, but have unclear physical significance. More recently, a fit to diffraction and imaging experiments suggested that the maximum tolerable dose varies as q -1 or linearly with resolution. Here, it is shown that crystallographic data have been strongly perturbed by the effects of spatially nonuniform crystal irradiation and diffraction during data collection. Reanalysis shows that these data are consistent with a purely exponential local dose dependence, = I 0(q)exp[-D/D e(q)], where D e(q) ∝ q α with α ≃ 1.7. A physics-based model for radiation damage, in which damage events occurring at random locations within a sample each cause energy deposition and blurring of the electron density within a small volume, predicts this exponential variation with dose for all q values and a decay exponent α ≃ 2 in two and three dimensions, roughly consistent with both diffraction and imaging experiments over more than two orders of magnitude in resolution. The B-factor model used to account for radiation damage in crystallographic scaling programs is consistent with α = 2, but may not accurately capture the dose dependencies of structure factors under typical nonuniform illumination conditions. The strong q dependence of radiation-induced diffraction decays implies that the previously proposed 20-30 MGy dose limit for protein crystallography should be replaced by a resolution-dependent dose limit that, for atomic resolution data sets, will be much smaller. The results suggest that the physics underlying basic experimental trends in radiation damage at T ≃ 100 K is straightforward and universal. Deviations of the local I(q, D) from strictly exponential behavior may provide mechanistic insights, especially into the radiation-damage processes responsible for the greatly increased radiation sensitivity observed at T ≃ 300 K.
Collapse
Affiliation(s)
- Hakan Atakisi
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | | - David W. Moreau
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
6
|
Dickerson JL, Garman EF. The potential benefits of using higher X-ray energies for macromolecular crystallography. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:922-930. [PMID: 31274414 DOI: 10.1107/s160057751900612x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/01/2019] [Indexed: 05/06/2023]
Abstract
Using X-ray energies higher than those normally used (5-15 keV) for macromolecular X-ray crystallography (MX) at synchrotron sources can theoretically increase the achievable signal as a function of dose and reduce the rate of radiation damage. In practice, a major stumbling block to the use of higher X-ray energy has been the reduced quantum efficiency of silicon detectors as the X-ray energy increases, but hybrid photon-counting CdTe detectors are optimized for higher X-ray energies, and their performance has been steadily improving. Here the potential advantages of using higher incident beam energy together with a CdTe detector for MX are explored, with a particular focus on the advantages that higher beam energies may have for MX experiments with microbeams or microcrystals. Monte Carlo simulations are presented here which for the first time include the efficiency responses of some available X-ray detectors, as well as the possible escape of photoelectrons from the sample and their entry from surrounding material. The results reveal a `sweet spot' at an incident X-ray energy of 26 keV, and show a greater than factor of two improvement in diffraction efficiency at this energy when using microbeams and microcrystals of 5 µm or less.
Collapse
Affiliation(s)
- Joshua L Dickerson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Elspeth F Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
7
|
The Influence of Photoelectron Escape in Radiation Damage Simulations of Protein Micro-Crystallography. CRYSTALS 2018. [DOI: 10.3390/cryst8070267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiation damage represents a fundamental limit in the determination of protein structures via macromolecular crystallography (MX) at third-generation synchrotron sources. Over the past decade, improvements in both source and detector technology have led to MX experiments being performed with smaller and smaller crystals (on the order of a few microns), often using microfocus beams. Under these conditions, photoelectrons (PEs), the primary agents of radiation-damage in MX, may escape the diffraction volume prior to depositing all of their energy. The impact of PE escape is more significant at higher beam energies (>20 keV) as the electron inelastic mean free path (IMFP) is longer, allowing the electrons to deposit their energy over a larger area, extending further from their point of origin. Software such as RADDOSE-3D has been used extensively to predict the dose (energy absorbed per unit mass) that a crystal will absorb under a given set of experimental parameters and is an important component in planning a successful MX experiment. At the time this study was undertaken, dose predictions made using RADDOSE-3D were spatially-resolved, but did not yet account for the propagation of PEs through the diffraction volume. Hence, in the case of microfocus crystallography, it is anticipated that deviations may occur between the predicted and actual dose absorbed due to the influence of PEs. To explore this effect, we conducted a series of simulations of the dose absorbed by micron-sized crystals during microfocus MX experiments. Our simulations spanned beam and crystal sizes ranging from 1μm to 5μm for beam energies between 9 keV and 30 keV. Our simulations were spatially and temporarily resolved and accounted for the escape of PEs from the diffraction volume. The spatially-resolved dose maps produced by these simulations were used to predict the rate of intensity loss in a Bragg spot, a key metric for tracking global radiation damage. Our results were compared to predictions obtained using a recent version of RADDOSE-3D that did not account for PE escape; the predicted crystal lifetimes are shown to differ significantly for the smallest crystals and for high-energy beams, when PE escape is included in the simulations.
Collapse
|
8
|
Warkentin MA, Atakisi H, Hopkins JB, Walko D, Thorne RE. Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams. IUCRJ 2017; 4:785-794. [PMID: 29123681 PMCID: PMC5668864 DOI: 10.1107/s2052252517013495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/20/2017] [Indexed: 05/22/2023]
Abstract
Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s-1. At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution of diffracted intensity within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity-dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ∼1.5-2 compared with those observed at conventional dose rates. Improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.
Collapse
Affiliation(s)
- Matthew A. Warkentin
- Physics Department, Cornell University, Clark Hall, Ithaca, NY 14853, USA
- Rubota Corporation, 1260 NW Naito Parkway #609, Portland, OR 97209, USA
| | - Hakan Atakisi
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | | - Donald Walko
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | | |
Collapse
|
9
|
Coughlan HD, Darmanin C, Kirkwood HJ, Phillips NW, Hoxley D, Clark JN, Vine DJ, Hofmann F, Harder RJ, Maxey E, Abbey B. Bragg coherent diffraction imaging and metrics for radiation damage in protein micro-crystallography. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:83-94. [PMID: 28009549 PMCID: PMC5182022 DOI: 10.1107/s1600577516017525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/01/2016] [Indexed: 05/09/2023]
Abstract
The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals (Helliwell, 1984). Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to the diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. A possible mechanism to account for these observations is proposed.
Collapse
Affiliation(s)
- H. D. Coughlan
- ARC Centre of Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
- CSIRO Manufacturing Flagship, Parkville 3052, Australia
| | - C. Darmanin
- ARC Centre of Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| | - H. J. Kirkwood
- ARC Centre of Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| | - N. W. Phillips
- ARC Centre of Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
- CSIRO Manufacturing Flagship, Parkville 3052, Australia
| | - D. Hoxley
- ARC Centre of Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| | - J. N. Clark
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronensynchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - D. J. Vine
- Advanced Light Source, Berkeley Lab, Berkeley, CA 94720, USA
| | - F. Hofmann
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - R. J. Harder
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - E. Maxey
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - B. Abbey
- ARC Centre of Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| |
Collapse
|
10
|
Affiliation(s)
- Elspeth F. Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Martin Weik
- University Grenoble Alpes, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
| |
Collapse
|
11
|
Garman EF, Weik M. Radiation damage to macromolecules: kill or cure? JOURNAL OF SYNCHROTRON RADIATION 2015; 22:195-200. [PMID: 25723921 DOI: 10.1107/s160057751500380x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 05/07/2023]
Abstract
Radiation damage induced by X-ray beams during macromolecular diffraction experiments remains an issue of concern in structural biology. While advances in our understanding of this phenomenon, driven in part by a series of workshops in this area, undoubtedly have been and are still being made, there are still questions to be answered. Eight papers in this volume give a flavour of ongoing investigations, addressing various issues. These range over: a proposed new metric derived from atomic B-factors for identifying potentially damaged amino acid residues, a study of the relative damage susceptibility of protein and DNA in a DNA/protein complex, a report of an indication of specific radiation damage to a protein determined from data collected using an X-ray free-electron laser (FEL), an account of the challenges in FEL raw diffraction data analysis, an exploration of the possibilities of using radiation damage induced phasing to solve structures using FELs, simulations of radiation damage as a function of FEL temporal pulse profiles, results on the influence of radiation damage during scanning X-ray diffraction measurements and, lastly, consideration of strategies for minimizing radiation damage during SAXS experiments. In this short introduction, these contributions are briefly placed in the context of other current work on radiation damage in the field.
Collapse
Affiliation(s)
- Elspeth F Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Martin Weik
- Université Grenoble Alpes, IBS, F-38044 Grenoble, France
| |
Collapse
|
12
|
Helliwell JR, Mitchell EP. Synchrotron radiation macromolecular crystallography: science and spin-offs. IUCRJ 2015; 2:283-91. [PMID: 25866664 PMCID: PMC4392420 DOI: 10.1107/s205225251402795x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/22/2014] [Indexed: 05/11/2023]
Abstract
A current overview of synchrotron radiation (SR) in macromolecular crystallography (MX) instrumentation, methods and applications is presented. Automation has been and remains a central development in the last decade, as have the rise of remote access and of industrial service provision. Results include a high number of Protein Data Bank depositions, with an increasing emphasis on the successful use of microcrystals. One future emphasis involves pushing the frontiers of using higher and lower photon energies. With the advent of X-ray free-electron lasers, closely linked to SR developments, the use of ever smaller samples such as nanocrystals, nanoclusters and single molecules is anticipated, as well as the opening up of femtosecond time-resolved diffraction structural studies. At SR sources, a very high-throughput assessment for the best crystal samples and the ability to tackle just a few micron and sub-micron crystals will become widespread. With higher speeds and larger detectors, diffraction data volumes are becoming long-term storage and archiving issues; the implications for today and the future are discussed. Together with the rise of the storage ring to its current pre-eminence in MX data provision, the growing tendency of central facility sites to offer other centralized facilities complementary to crystallography, such as cryo-electron microscopy and NMR, is a welcome development.
Collapse
Affiliation(s)
- John R. Helliwell
- School of Chemistry, University of Manchester, Brunswick Street, Manchester M13 9PL, England
| | - Edward P. Mitchell
- ESRF, 71 avenue des Martyrs, 38000 Grenoble, France
- Faculty of Natural Sciences, Keele University, Staffordshire ST5 5BG, England
| |
Collapse
|
13
|
Abstract
Electron-hole separation following hard X-ray absorption during diffraction analysis of soft materials under cryogenic conditions produces substantial local electric fields visualizable by second harmonic generation (SHG) microscopy. Monte Carlo simulations of X-ray photoelectron trajectories suggest the formation of substantial local electric fields in the regions adjacent to those exposed to X-rays, indicating a possible electric-field-induced SHG (EFISH) mechanism for generating the observed signal. In studies of amorphous vitreous solvents, analysis of the SHG spatial profiles following X-ray microbeam exposure was consistent with an EFISH mechanism. Within protein crystals, exposure to 12-keV (1.033-Å) X-rays resulted in increased SHG in the region extending ∼ 3 μm beyond the borders of the X-ray beam. Moderate X-ray exposures typical of those used for crystal centering by raster scanning through an X-ray beam were sufficient to produce static electric fields easily detectable by SHG. The X-ray-induced SHG activity was observed with no measurable loss for longer than 2 wk while maintained under cryogenic conditions, but disappeared if annealed to room temperature for a few seconds. These results provide direct experimental observables capable of validating simulations of X-ray-induced damage within soft materials. In addition, X-ray-induced local fields may potentially impact diffraction resolution through localized piezoelectric distortions of the lattice.
Collapse
|