1
|
Rodriguez FD, Covenas R. Association of Neurokinin-1 Receptor Signaling Pathways with Cancer. Curr Med Chem 2024; 31:6460-6486. [PMID: 37594106 DOI: 10.2174/0929867331666230818110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/14/2023] [Accepted: 07/01/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Numerous biochemical reactions leading to altered cell proliferation cause tumorigenesis and cancer treatment resistance. The mechanisms implicated include genetic and epigenetic changes, modified intracellular signaling, and failure of control mechanisms caused by intrinsic and extrinsic factors alone or combined. No unique biochemical events are responsible; entangled molecular reactions conduct the resident cells in a tissue to display uncontrolled growth and abnormal migration. Copious experimental research supports the etiological responsibility of NK-1R (neurokinin-1 receptor) activation, alone or cooperating with other mechanisms, in cancer appearance in different tissues. Consequently, a profound study of this receptor system in the context of malignant processes is essential to design new treatments targeting NK-1R-deviated activity. METHODS This study reviews and discusses recent literature that analyzes the main signaling pathways influenced by the activation of neurokinin 1 full and truncated receptor variants. Also, the involvement of NK-1R in cancer development is discussed. CONCLUSION NK-1R can signal through numerous pathways and cross-talk with other receptor systems. The participation of override or malfunctioning NK-1R in malignant processes needs a more precise definition in different types of cancers to apply satisfactory and effective treatments. A long way has already been traveled: the current disposal of selective and effective NK-1R antagonists and the capacity to develop new drugs with biased agonistic properties based on the receptor's structural states with functional significance opens immediate research action and clinical application.
Collapse
Affiliation(s)
- Francisco David Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
| | - Rafael Covenas
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Liang G, He Y, Zhao L, Ouyang J, Geng W, Zhang X, Han X, Jiang Y, Ding H, Xiong Y, Dong J, Liu M, Shang H. CTNNBL1 restricts HIV-1 replication by suppressing viral DNA integration into the cell genome. Cell Rep 2022; 38:110533. [PMID: 35294870 DOI: 10.1016/j.celrep.2022.110533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/17/2021] [Accepted: 02/25/2022] [Indexed: 11/03/2022] Open
Abstract
Retroviral integration is mediated by a unique enzymatic process shared by all retroviruses and retrotransposons. During integration, double-stranded linear viral DNA is inserted into the host genome in a process catalyzed by viral-encoded integrase (IN). However, host cell defenses against HIV-1 integration are not clear. This study identifies β-catenin-like protein 1 (CTNNBL1) as a potent inhibitor of HIV-1 integration via association with viral-encoded integrase (IN) and its cofactor, lens epithelium-derived growth factor/p75. CTNNBL1 overexpression blocks HIV-1 integration and inhibits viral replication, whereas CTNNBL1 depletion significantly upregulates HIV-1 integration into the genome of various target cells. Further, CTNNBL1 expression is downregulated in CD4+ T cells by activation, and CTNNBL1 depletion also facilitates HIV-1 integration in resting CD4+ T cells. Thus, host cells may employ CTNNBL1 to inhibit HIV-1 integration into the genome. This finding suggests a strategy for the treatment of HIV infections.
Collapse
Affiliation(s)
- Guoxin Liang
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; Research Institute for Cancer Therapy, The First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Yang He
- Research Institute for Cancer Therapy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Li Zhao
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiayue Ouyang
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenqing Geng
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaowei Zhang
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaoxu Han
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yongjun Jiang
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haibo Ding
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Xiong
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinxiu Dong
- National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mei Liu
- National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
3
|
Kuhny M, Forbes LR, Çakan E, Vega-Loza A, Kostiuk V, Dinesh RK, Glauzy S, Stray-Pedersen A, Pezzi AE, Hanson IC, Vargas-Hernandez A, Xu ML, Coban-Akdemir ZH, Jhangiani SN, Muzny DM, Gibbs RA, Lupski JR, Chinn IK, Schatz DG, Orange JS, Meffre E. Disease-associated CTNNBL1 mutation impairs somatic hypermutation by decreasing nuclear AID. J Clin Invest 2021; 130:4411-4422. [PMID: 32484799 DOI: 10.1172/jci131297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 05/13/2020] [Indexed: 01/02/2023] Open
Abstract
Patients with common variable immunodeficiency associated with autoimmune cytopenia (CVID+AIC) generate few isotype-switched B cells with severely decreased frequencies of somatic hypermutations (SHMs), but their underlying molecular defects remain poorly characterized. We identified a CVID+AIC patient who displays a rare homozygous missense M466V mutation in β-catenin-like protein 1 (CTNNBL1). Because CTNNBL1 binds activation-induced cytidine deaminase (AID) that catalyzes SHM, we tested AID interactions with the CTNNBL1 M466V variant. We found that the M466V mutation interfered with the association of CTNNBL1 with AID, resulting in decreased AID in the nuclei of patient EBV-transformed B cell lines and of CTNNBL1 466V/V Ramos B cells engineered to express only CTNNBL1 M466V using CRISPR/Cas9 technology. As a consequence, the scarce IgG+ memory B cells from the CTNNBL1 466V/V patient showed a low SHM frequency that averaged 6.7 mutations compared with about 18 mutations per clone in healthy-donor counterparts. In addition, CTNNBL1 466V/V Ramos B cells displayed a decreased incidence of SHM that was reduced by half compared with parental WT Ramos B cells, demonstrating that the CTNNBL1 M466V mutation is responsible for defective SHM induction. We conclude that CTNNBL1 plays an important role in regulating AID-dependent antibody diversification in humans.
Collapse
Affiliation(s)
- Marcel Kuhny
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lisa R Forbes
- Section of Pediatric Allergy, Immunology, and Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,William T. Shearer Texas Children's Hospital Center for Human Immunobiology, Houston, Texas, USA
| | - Elif Çakan
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andrea Vega-Loza
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Valentyna Kostiuk
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ravi K Dinesh
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Salomé Glauzy
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Asbjorg Stray-Pedersen
- Baylor-Hopkins Center for Mendelian Genomics, Houston, Texas, USA.,Institute of Clinical Medicine and.,Norwegian National Unit for Newborn Screening, Department of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Ashley E Pezzi
- Department of Dermatology, Baylor College of Medicine, Houston, Texas, USA
| | - I Celine Hanson
- Section of Pediatric Allergy, Immunology, and Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Alexander Vargas-Hernandez
- Section of Pediatric Allergy, Immunology, and Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,William T. Shearer Texas Children's Hospital Center for Human Immunobiology, Houston, Texas, USA
| | - Mina LuQuing Xu
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zeynep H Coban-Akdemir
- Baylor-Hopkins Center for Mendelian Genomics, Houston, Texas, USA.,Department of Molecular and Human Genetics and
| | - Shalini N Jhangiani
- Department of Molecular and Human Genetics and.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Donna M Muzny
- Department of Molecular and Human Genetics and.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Richard A Gibbs
- Baylor-Hopkins Center for Mendelian Genomics, Houston, Texas, USA.,Department of Molecular and Human Genetics and.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - James R Lupski
- Baylor-Hopkins Center for Mendelian Genomics, Houston, Texas, USA.,Department of Molecular and Human Genetics and.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Ivan K Chinn
- Section of Pediatric Allergy, Immunology, and Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,William T. Shearer Texas Children's Hospital Center for Human Immunobiology, Houston, Texas, USA.,Baylor-Hopkins Center for Mendelian Genomics, Houston, Texas, USA
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jordan S Orange
- Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York-Presbyterian Morgan Stanley Children's Hospital, New York, New York, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.,Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
An engineered oncolytic virus expressing PD-L1 inhibitors activates tumor neoantigen-specific T cell responses. Nat Commun 2020; 11:1395. [PMID: 32170083 PMCID: PMC7070065 DOI: 10.1038/s41467-020-15229-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 02/27/2020] [Indexed: 12/30/2022] Open
Abstract
Oncolytic viruses offer an in situ vaccination approach to activate tumor-specific T cell responses. However, the upregulation of PD-L1 expression on tumor cells and immune cells leads to tumor resistance to oncolytic immunotherapy. In this study, we generate an engineered oncolytic virus that coexpresses a PD-L1 inhibitor and GM-CSF. We find that the oncolytic virus is able to secrete the PD-L1 inhibitor that systemically binds and inhibits PD-L1 on tumor cells and immune cells. Importantly, the intratumoral injection with the oncolytic virus overcomes PD-L1-mediated immunosuppression during both the priming and effector phases, provokes systemic T cell responses against dominant and subdominant neoantigen epitopes derived from mutations, and leads to an effective rejection of both virus-injected and distant tumors. In summary, this engineered oncolytic virus is able to activate tumor neoantigen-specific T cell responses, providing a potent, individual tumor-specific oncolytic immunotherapy for cancer patients, especially those resistant to PD-1/PD-L1 blockade therapy. Oncolytic viruses can activate tumor neoantigen-specific T cell responses. However, PD-L1 upregulation on tumor cells and immune cells leads to tumor resistance to this immunotherapy approach. Here, the authors develop an oncolytic virus which expresses both a PD-L1 inhibitor and GM-CSF which allows an improved tumor neoantigen-specific T cell response in preclinical models.
Collapse
|
5
|
Gul IS, Hulpiau P, Saeys Y, van Roy F. Metazoan evolution of the armadillo repeat superfamily. Cell Mol Life Sci 2017; 74:525-541. [PMID: 27497926 PMCID: PMC11107757 DOI: 10.1007/s00018-016-2319-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/05/2016] [Accepted: 07/25/2016] [Indexed: 02/08/2023]
Abstract
The superfamily of armadillo repeat proteins is a fascinating archetype of modular-binding proteins involved in various fundamental cellular processes, including cell-cell adhesion, cytoskeletal organization, nuclear import, and molecular signaling. Despite their diverse functions, they all share tandem armadillo (ARM) repeats, which stack together to form a conserved three-dimensional structure. This superhelical armadillo structure enables them to interact with distinct partners by wrapping around them. Despite the important functional roles of this superfamily, a comprehensive analysis of the composition, classification, and phylogeny of this protein superfamily has not been reported. Furthermore, relatively little is known about a subset of ARM proteins, and some of the current annotations of armadillo repeats are incomplete or incorrect, often due to high similarity with HEAT repeats. We identified the entire armadillo repeat superfamily repertoire in the human genome, annotated each armadillo repeat, and performed an extensive evolutionary analysis of the armadillo repeat proteins in both metazoan and premetazoan species. Phylogenetic analyses of the superfamily classified them into several discrete branches with members showing significant sequence homology, and often also related functions. Interestingly, the phylogenetic structure of the superfamily revealed that about 30 % of the members predate metazoans and represent an ancient subset, which is gradually evolving to acquire complex and highly diverse functions.
Collapse
Affiliation(s)
- Ismail Sahin Gul
- Inflammation Research Center (IRC), VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, FSVM Building, Technologiepark 927, 9052, Ghent, Belgium
| | - Paco Hulpiau
- Inflammation Research Center (IRC), VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, FSVM Building, Technologiepark 927, 9052, Ghent, Belgium
| | - Yvan Saeys
- Inflammation Research Center (IRC), VIB, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Frans van Roy
- Inflammation Research Center (IRC), VIB, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, FSVM Building, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
6
|
Ahn JW, Sik Jin K, Francis Son H, Ho Chang J, Kim KJ. Small angle X-ray scattering studies of CTNNBL1 dimerization and CTNNBL1/CDC5L complex. Sci Rep 2015; 5:14251. [PMID: 26381213 PMCID: PMC4585563 DOI: 10.1038/srep14251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/21/2015] [Indexed: 01/13/2023] Open
Abstract
The hPrp19/CDC5L complex is a non-snRNP spliceosome complex that plays a key role in the spliceosome activation during pre-mRNA splicing, and CTNNBL1 and CDC5L are essential components of the complex. In this study, to investigate the oligomeric state of CTNNBL1 in solution, we performed small angle X-ray scattering experiments in various concentrations of NaCl. We observed that CTNNBL1 existed as a dimer in physiological NaCl concentrations. Site-directed mutagenesis experiment of CTNNBL1 confirmed that N-terminal capping region and the first four ARM repeats are important for dimerization of the protein. We also found that the positively-charged NLS3-containing region (residues 197-235) of CDC5L bound to the negatively-charged patch of CTNNBL1 and that the CTNNBL1/CDC5L complex formed a heterotetramer consisting of one CTNNBL1 dimer and one CDC5L dimer. Moreover, reconstruction of 3D models of CTNNBL1/CDC5L complexes containing CTNNBL1 and three different truncated forms of CDC5L showed that the CDC5L(141-196) region and the CDC5L(236-377) region were positioned at the top of the N-terminal capping region and at the bottom of ARM VII of CTNNBL1, respectively.
Collapse
Affiliation(s)
- Jae-Woo Ahn
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Jigok-ro 80, Pohang, Kyungbuk 790-784, Korea
| | - Hyeoncheol Francis Son
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Korea
| | - Jeong Ho Chang
- Department of Biology, Teachers College, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Korea
| |
Collapse
|
7
|
van Maldegem F, Maslen S, Johnson CM, Chandra A, Ganesh K, Skehel M, Rada C. CTNNBL1 facilitates the association of CWC15 with CDC5L and is required to maintain the abundance of the Prp19 spliceosomal complex. Nucleic Acids Res 2015; 43:7058-69. [PMID: 26130721 PMCID: PMC4538830 DOI: 10.1093/nar/gkv643] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 06/09/2015] [Indexed: 12/16/2022] Open
Abstract
In order to catalyse the splicing of messenger RNA, multiple proteins and RNA components associate and dissociate in a dynamic highly choreographed process. The Prp19 complex is a conserved essential part of the splicing machinery thought to facilitate the conformational changes the spliceosome undergoes during catalysis. Dynamic protein interactions often involve highly disordered regions that are difficult to study by structural methods. Using amine crosslinking and hydrogen-deuterium exchange coupled to mass spectrometry, we describe the architecture of the Prp19 sub-complex that contains CTNNBL1. Deficiency in CTNNBL1 leads to delayed initiation of cell division and embryonic lethality. Here we show that in vitro CTNNBL1 enhances the association of CWC15 and CDC5L, both core Prp19 complex proteins and identify an overlap in the region of CDC5L that binds either CTNNBL1 or CWC15 suggesting the two proteins might exchange places in the complex. Furthermore, in vivo, CTNNBL1 is required to maintain normal levels of the Prp19 complex and to facilitate the interaction of CWC15 with CDC5L. Our results identify a chaperone function for CTNNBL1 within the essential Prp19 complex, a function required to maintain the integrity of the complex and to support efficient splicing.
Collapse
Affiliation(s)
| | - Sarah Maslen
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | | - Anita Chandra
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Karuna Ganesh
- Department of Medicine and Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Cristina Rada
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| |
Collapse
|
8
|
Yang Y, Wang G, Huang X, Du Z. Expression, purification and crystallization of the SKICH domain of human TAX1BP1. Acta Crystallogr F Struct Biol Commun 2014; 70:619-23. [PMID: 24817723 PMCID: PMC4014332 DOI: 10.1107/s2053230x14006396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/22/2014] [Indexed: 01/12/2023] Open
Abstract
TAX1BP1 is a highly conserved, pleiotropic protein that plays many essential functions in human cells, including negative regulation of inflammatory and antimicrobial responses mediated by NF-κB and IRF3 signaling, inhibition of apoptosis, transcriptional coactivation and autophagy etc. TAX1BP1 contains a SKICH domain at the N-terminus, three coiled-coil domains in the middle and two ubiquitin-binding zinc-finger motifs at the C-terminus. The SKICH domain and the linker sequence between the SKICH domain and the coiled-coil region mediate interaction with ubiquitin-like proteins of the LC3/GABARAP family, which are autophagosome markers. For structure determination of the SKICH domain of TAX1BP1, a protein construct (amino acids 15-148) corresponding to the SKICH domain plus the linker region was expressed, purified and crystallized. A native diffraction data set has been collected to 1.9 Å resolution. A molecular-replacement solution has been found by using the structure of the SKICH domain of NDP52, a paralog of TAX1BP1.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL 62901, USA
| | - Guan Wang
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL 62901, USA
| | - Xiaolan Huang
- Department of Computer Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL 62901, USA
| | - Zhihua Du
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL 62901, USA
| |
Collapse
|
9
|
Hu Y, Ericsson I, Doseth B, Liabakk NB, Krokan HE, Kavli B. Activation-induced cytidine deaminase (AID) is localized to subnuclear domains enriched in splicing factors. Exp Cell Res 2014; 322:178-92. [DOI: 10.1016/j.yexcr.2014.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/02/2014] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
|
10
|
Ahn JW, Kim S, Kim EJ, Kim YJ, Kim KJ. Structural insights into the novel ARM-repeat protein CTNNBL1 and its association with the hPrp19-CDC5L complex. ACTA ACUST UNITED AC 2014; 70:780-8. [PMID: 24598747 DOI: 10.1107/s139900471303318x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/08/2013] [Indexed: 11/10/2022]
Abstract
The hPrp19-CDC5L complex plays a crucial role during human pre-mRNA splicing by catalytic activation of the spliceosome. In order to elucidate the molecular architecture of the hPrp19-CDC5L complex, the crystal structure of CTNNBL1, one of the major components of this complex, was determined. Unlike canonical ARM-repeat proteins such as β-catenin and importin-α, CTNNBL1 was found to contain a twisted and extended ARM-repeat structure at the C-terminal domain and, more importantly, the protein formed a stable dimer. A highly negatively charged patch formed in the N-terminal ARM-repeat domain of CTNNBL1 provides a binding site for CDC5L, a binding partner of the protein in the hPrp19-CDC5L complex, and these two proteins form a complex with a stoichiometry of 2:2. These findings not only present the crystal structure of a novel ARM-repeat protein, CTNNBL1, but also provide insights into the detailed molecular architecture of the hPrp19-CDC5L complex.
Collapse
Affiliation(s)
- Jae-Woo Ahn
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| | - Sangwoo Kim
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Eun-Jung Kim
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| | - Yeo-Jin Kim
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| | - Kyung-Jin Kim
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| |
Collapse
|
11
|
Structural and mutational analysis reveals that CTNNBL1 binds NLSs in a manner distinct from that of its closest armadillo-relative, karyopherin α. FEBS Lett 2013; 588:21-7. [PMID: 24269683 PMCID: PMC3885797 DOI: 10.1016/j.febslet.2013.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/18/2013] [Accepted: 11/04/2013] [Indexed: 11/21/2022]
Abstract
CTNNBL1 is a spliceosome-associated protein that binds nuclear localization signals (NLSs) in splice factors CDC5L and Prp31 as well as the antibody diversifying enzyme AID. Here, crystal structures of human CTNNBL1 reveal a distinct structure from its closest homologue karyopherin-α. CTNNBL1 comprises a HEAT-like domain (including a nuclear export signal), a central armadillo domain, and a coiled-coil C-terminal domain. Structure-guided mutations of the region homologous to the karyopherin-α NLS-binding site fail to disrupt CTNNBL1-NLS interactions. Our results identify CTNNBL1 as a unique selective NLS-binding protein with striking differences from karyopherin-αs.
Collapse
|