Funari SS, Rapp G, Perbandt M, Dierks K, Vallazza M, Betzel C, Erdmann VA, Svergun DI. Structure of free Thermus flavus 5 S rRNA at 1.3 nm resolution from synchrotron X-ray solution scattering.
J Biol Chem 2000;
275:31283-8. [PMID:
10896668 DOI:
10.1074/jbc.m004974200]
[Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The shape of free Thermus flavus 5 S rRNA in solution at 1.3 nm resolution is restored from synchrotron x-ray scattering data using an ab initio simulated annealing algorithm. The free 5 S rRNA is a bent elongated molecule displaying a compact central region and two projecting arms, similar to those of the tRNA. The atomic models of the 5 S rRNA domains A-D-E and B-C in the form of elongated helices can be well accommodated within the shape, yielding a tentative model of the structure of the free 5 S rRNA in solution. Its comparison with the recent protein-RNA map in the ribosome (Svergun, D. I., and Nierhaus, K. H. (2000) J. Biol. Chem. 275, 14432-14439) indicates that the 5 S rRNA becomes essentially more compact upon complex formation with specific ribosomal proteins. A conceivable conformational change involves rotation of the B-C domain toward the A-D-E domain. The model of free 5 S rRNA displays no interactions between domains E and C, but such interactions are possible in the bound molecule.
Collapse