1
|
Schirer A, Rouch A, Marcheteau E, Stojko J, Sophie Landron, Jeantet E, Fould B, Ferry G, Boutin JA. Further assessments of ligase LplA-mediated modifications of proteins in vitro and in cellulo. Mol Biol Rep 2021; 49:149-161. [PMID: 34718939 DOI: 10.1007/s11033-021-06853-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/23/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Posttranslational modifications of proteins are catalyzed by a large family of enzymes catalyzing many chemical modifications. One can hijack the natural use of those enzymes to modify targeted proteins with synthetic chemical moieties. The lipoic acid ligase LplA mutants can be used to introduce onto the lysine sidechain lipoic acid moiety synthetic analogues. Substrate protein candidates of the ligase must obey a few a priori rules. METHODS AND RESULTS In the present report, we technically detailed the use of a cell line stably expressing both the ligase and a model protein (thioredoxin). Although the goal can be reach, and the protein visualized in situ, many experimental difficulties must be fixed. The sequence of events comprises (i) in cellulo labeling of the target protein with a N3-lipoic acid derivative catalyzed by the mutant ligase, (ii) the further introduction by click chemistry onto this lysine sidechain of a fluorophore and (iii) the following of the labeled protein in living cells. One of the main difficulties was to assess the click chemistry step onto the living cells, because images from both control and experimental cells were similar. Alternatively, we describe at that stage, the preferred use of another technique: the Halo-Tag one that led to the obtention of clear images of the targeted protein in its cellular context. Although the ligase-mediated labeling of protein in situ is a rich domain for which many cellular tools must be developed, many difficulties must be considered before entering a systematic use of this approach. CONCLUSIONS In the present contribution, we added several steps of analytical characterization, both in vitro and in cellulo that were previously lacking. Furthermore, we show that the use of the click chemistry should be manipulated with care, as the claimed specificity might be not complete whenever living cells are used. Finally, we added another approach-the Halo Tag-to complete the previously suggested approaches for labelling proteins in cells, as we found difficult to strictly apply the previously reported methodology.
Collapse
Affiliation(s)
- Alicia Schirer
- PEX Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France.,, Techno Parc de Thudinie 2, 6536, Thuin, Belgium
| | - Anne Rouch
- PEX Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Estelle Marcheteau
- PEX Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Johann Stojko
- PEX Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Sophie Landron
- PEX Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Elodie Jeantet
- PEX Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Benjamin Fould
- PEX Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Gilles Ferry
- PEX Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Jean A Boutin
- PEX Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France. .,Institut de Recherches Internationales Servier, 50 rue Carnot, 92284, Suresnes, France. .,Faculté de Pharmacie, PHARMADEV (Pharmacochimie et Biologie Pour le Développement), Université Toulouse 3 Paul Sabatier, 35 chemin des maraîchers, 31062, Toulouse Cedex 9, France.
| |
Collapse
|
2
|
Bolitho EM, Coverdale JPC, Bridgewater HE, Clarkson GJ, Quinn PD, Sanchez‐Cano C, Sadler PJ. Tracking Reactions of Asymmetric Organo-Osmium Transfer Hydrogenation Catalysts in Cancer Cells. Angew Chem Int Ed Engl 2021; 60:6462-6472. [PMID: 33590607 PMCID: PMC7985874 DOI: 10.1002/anie.202016456] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/16/2020] [Indexed: 12/21/2022]
Abstract
Most metallodrugs are prodrugs that can undergo ligand exchange and redox reactions in biological media. Here we have investigated the cellular stability of the anticancer complex [OsII [(η6 -p-cymene)(RR/SS-MePh-DPEN)] [1] (MePh-DPEN=tosyl-diphenylethylenediamine) which catalyses the enantioselective reduction of pyruvate to lactate in cells. The introduction of a bromide tag at an unreactive site on a phenyl substituent of Ph-DPEN allowed us to probe the fate of this ligand and Os in human cancer cells by a combination of X-ray fluorescence (XRF) elemental mapping and inductively coupled plasma-mass spectrometry (ICP-MS). The BrPh-DPEN ligand is readily displaced by reaction with endogenous thiols and translocated to the nucleus, whereas the Os fragment is exported from the cells. These data explain why the efficiency of catalysis is low, and suggests that it could be optimised by developing thiol resistant analogues. Moreover, this work also provides a new way for the delivery of ligands which are inactive when administered on their own.
Collapse
Affiliation(s)
- Elizabeth M. Bolitho
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- I14 Imaging BeamlineDiamond Light SourceOxfordOX11 0DEUK
| | | | | | - Guy J. Clarkson
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Paul D. Quinn
- I14 Imaging BeamlineDiamond Light SourceOxfordOX11 0DEUK
| | - Carlos Sanchez‐Cano
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Paseo de Miramon 18220014San SebastiánSpain
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
3
|
Bolitho EM, Coverdale JPC, Bridgewater HE, Clarkson GJ, Quinn PD, Sanchez‐Cano C, Sadler PJ. Tracking Reactions of Asymmetric Organo‐Osmium Transfer Hydrogenation Catalysts in Cancer Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Elizabeth M. Bolitho
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- I14 Imaging Beamline Diamond Light Source Oxford OX11 0DE UK
| | | | | | - Guy J. Clarkson
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Paul D. Quinn
- I14 Imaging Beamline Diamond Light Source Oxford OX11 0DE UK
| | - Carlos Sanchez‐Cano
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE) Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 San Sebastián Spain
| | - Peter J. Sadler
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
4
|
Battistella C, Yang Y, Chen J, Klok HA. Synthesis and Postpolymerization Modification of Fluorine-End-Labeled Poly(Pentafluorophenyl Methacrylate) Obtained via RAFT Polymerization. ACS OMEGA 2018; 3:9710-9721. [PMID: 31459100 PMCID: PMC6644891 DOI: 10.1021/acsomega.8b01654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/09/2018] [Indexed: 06/10/2023]
Abstract
Chain-end-labeled polymers are interesting for a range of applications. In polymer nanomedicine, chain-end-labeled polymers are useful to study and help understand cellular internalization and intracellular trafficking processes. The recent advent of fluorescent label-free techniques, such as nanoscale secondary ion mass spectrometry (NanoSIMS), provides access to high-resolution intracellular mapping that can complement information obtained using fluorescent-labeled materials and confocal microscopy and flow cytometry. Using poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) as a prototypical polymer nanomedicine, this paper presents a synthetic strategy to polymers that contain trace element labels, such as fluorine, which can be used for NanoSIMS analysis. The strategy presented in this paper is based on reversible addition fragmentation chain transfer (RAFT) polymerization of pentafluorophenyl methacrylate (PFMA) mediated by two novel chain-transfer agents (CTAs), which contain either one (α) or two (α,ω) fluorine labels. In the first part of this study, via a number of polymerization experiments, the polymerization properties of the fluorinated RAFT CTAs were established. 19F NMR spectroscopy revealed that these fluorinated RAFT agents possess unique spectral signatures, which allow to directly monitor RAFT agent conversion and measure end-group fidelity. Comparison with 4-cyanopentanoic acid dithiobenzoate, which is a standard CTA for the RAFT polymerization of PFMA, revealed that the introduction of one or two fluorine labels does not significantly affect the polymerization properties of the CTA. In the last part of this paper, a proof-of-concept study is presented that demonstrates the feasibility of the fluorine-labeled poly(pentafluorophenyl methacrylate) polymers as platforms for the postpolymerization modification to generate PHPMA-based polymer nanomedicines.
Collapse
Affiliation(s)
- Claudia Battistella
- Institut
des Matériaux et Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Yuejiao Yang
- School
of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai, China
| | - Jie Chen
- School
of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai, China
| | - Harm-Anton Klok
- Institut
des Matériaux et Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Imaging trace element distributions in single organelles and subcellular features. Sci Rep 2016; 6:21437. [PMID: 26911251 PMCID: PMC4766485 DOI: 10.1038/srep21437] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 01/15/2016] [Indexed: 12/30/2022] Open
Abstract
The distributions of chemical elements within cells are of prime importance in a wide range of basic and applied biochemical research. An example is the role of the subcellular Zn distribution in Zn homeostasis in insulin producing pancreatic beta cells and the development of type 2 diabetes mellitus. We combined transmission electron microscopy with micro- and nano-synchrotron X-ray fluorescence to image unequivocally for the first time, to the best of our knowledge, the natural elemental distributions, including those of trace elements, in single organelles and other subcellular features. Detected elements include Cl, K, Ca, Co, Ni, Cu, Zn and Cd (which some cells were supplemented with). Cell samples were prepared by a technique that minimally affects the natural elemental concentrations and distributions, and without using fluorescent indicators. It could likely be applied to all cell types and provide new biochemical insights at the single organelle level not available from organelle population level studies.
Collapse
|
6
|
Shah KM, Quinn PD, Gartland A, Wilkinson JM. Understanding the tissue effects of tribo-corrosion: uptake, distribution, and speciation of cobalt and chromium in human bone cells. J Orthop Res 2015; 33:114-21. [PMID: 25251692 DOI: 10.1002/jor.22729] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/08/2014] [Indexed: 02/04/2023]
Abstract
Cobalt and chromium species are released in the local tissues as a result of tribo-corrosion, and affect bone cell survival and function. However we have little understanding of the mechanisms of cellular entry, intracellular distribution, and speciation of the metals that result in impaired bone health. Here we used synchrotron based X-ray fluorescence (XRF), X-ray absorption spectroscopy (XAS), and fluorescent-probing approaches of candidate receptors P2X7R and divalent metal transporter-1 (DMT-1), to better understand the entry, intra-cellular distribution and speciation of cobalt (Co) and chromium (Cr) in human osteoblasts and primary human osteoclasts. We found that both Co and Cr were most highly localized at nuclear and perinuclear sites in osteoblasts, suggesting uptake through cell membrane transporters, and supported by a finding that P2X7 receptor blockade reduced cellular entry of Co. In contrast, metal species were present at discrete sites corresponding to the basolateral membrane in osteoclasts, suggesting cell entry by endocytosis and trafficking through a functional secretory domain. An intracellular reduction of Cr6+ to Cr3+ was the only redox change observed in cells treated with Co2+, Cr3+, and Cr6+. Our data suggest that the cellular uptake and processing of Co and Cr differs between osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Karan M Shah
- Department of Human Metabolism, The Mellanby Centre for Bone Research, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | | | | | | |
Collapse
|
7
|
Pushie MJ, Pickering I, Korbas M, Hackett MJ, George GN. Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chem Rev 2014; 114:8499-541. [PMID: 25102317 PMCID: PMC4160287 DOI: 10.1021/cr4007297] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Indexed: 12/13/2022]
Affiliation(s)
- M. Jake Pushie
- Molecular
and Environmental Sciences Research Group, Department of Geological
Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Ingrid
J. Pickering
- Molecular
and Environmental Sciences Research Group, Department of Geological
Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Toxicology
Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
- Department
of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Malgorzata Korbas
- Canadian
Light Source Inc., 44
Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
- Department
of Anatomy and Cell Biology, University
of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Mark J. Hackett
- Molecular
and Environmental Sciences Research Group, Department of Geological
Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Graham N. George
- Molecular
and Environmental Sciences Research Group, Department of Geological
Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Toxicology
Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
- Department
of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|