1
|
Hu J, Wang Z, Jiang D, Gao M, Dong L, Liu M, Song Z. pH-induced changes in IgE molecules measured by atomic force microscopy. Microsc Res Tech 2024. [PMID: 39044615 DOI: 10.1002/jemt.24660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/23/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
The environment surrounding proteins is tightly linked to its dynamics, which can significantly influence the conformation of proteins. This study focused on the effect of pH conditions on the ultrastructure of Immunoglobulin E (IgE) molecules. Herein, the morphology, height, and area of IgE molecules incubated at different pH were imaged by atomic force microscopy (AFM), and the law of IgE changes induced by pH value was explored. The experiment results indicated that the morphology, height and area of IgE molecules are pH dependent and highly sensitive. In particular, IgE molecules were more likely to present small-sized ellipsoids under acidic conditions, while IgE molecules tend to aggregate into large-sized flower-like structures under alkaline conditions. In addition, it was found that the height of IgE first decreased and then increased with the increase of pH, while the area of IgE increased with the increase of pH. This work provides valuable information for further study of IgE, and the methodological approach used in this study is expected to developed into AFM to investigate the changes of IgE molecules mediated by other physical and chemical factors. RESEARCH HIGHLIGHTS: The ultrastructure of IgE molecules is pH dependent and highly sensitive. IgE molecules were tend to present small-sized ellipsoids under acidic pH. Alkaline pH drives IgE self-assembly into flower-like aggregates.
Collapse
Affiliation(s)
- Jing Hu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
| | - Zuobin Wang
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- JR3CN & IRAC, University of Bedfordshire, Luton, UK
| | - Dayong Jiang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, China
| | - Mingyan Gao
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
| | - Litong Dong
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
| | - Mengnan Liu
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
| | - Zhengxun Song
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
2
|
Chatterjee S, Salimi A, Lee JY. Histidine tautomerism-mediated transthyretin amyloidogenesis: A molecular insight. Arch Biochem Biophys 2023; 742:109618. [PMID: 37172673 DOI: 10.1016/j.abb.2023.109618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Characterization of the conformational alterations involved in monomer misfolding is essential for elucidating the molecular basis of the initial stage of protein accumulation. Here, we report the first structural analyses of transthyretin (TTR) (26-57) fragments with two histidine tautomeric states (δ; Nδ1H and ε; Nε2H) using replica-exchange molecular dynamics (REMD) simulations. Explaining the organizational properties and misfolding procedure is challenging because the δ and ε configurations can occur in the free neutral state. REMD revealed that β-sheet generation is favored for the δδ (16.8%) and εδ (6.7%) tautomeric isomers, showing frequent main-chain contacts between the stable regions near the head (N-terminus) and central (middle) part compared to the εε (4.8%) and δε (2.8%) isomers. The presence of smaller and wider local energy minima may be related to the structural stability and toxicity of δδ/εδ and εε/δε. Histidines31 and 56 were the parts of regular (such as β-strand) and nonregular (such as coil) secondary structures within the highly toxic TTR isomer. For TTR amyloidosis, focusing on hazardous isomeric forms with high sheet contents may be a potent treatment strategy. Overall, our findings support the tautomerism concept and aid in our comprehension of the basic tautomeric actions of neutral histidine throughout the misfolding process.
Collapse
Affiliation(s)
- Sompriya Chatterjee
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Abbas Salimi
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea.
| |
Collapse
|
3
|
Mathew S, Arumainathan S. Crosslinked Chitosan-Gelatin Biocompatible Nanocomposite as a Neuro Drug Carrier. ACS OMEGA 2022; 7:18732-18744. [PMID: 35694506 PMCID: PMC9178715 DOI: 10.1021/acsomega.2c01443] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/06/2022] [Indexed: 05/04/2023]
Abstract
The polymers, chitosan, a polysaccharide, and gelatin, a protein, are crosslinked in different ratios without the aid of a crosslinking agent. Facile chemical reactions were followed to synthesize a chitosan/gelatin nanocomposite in three different ratios (1:1, 1:3, and 3:1). The solubility of chitosan and the stability of gelatin were improved due to the crosslinking. Both the polymers have excellent biodegradability, biocompatibility, adhesion, and absorption properties in a biological environment. The properties of the composite were favorable to be used in drug delivery applications, and the drug dopamine was encapsulated in the composite for all three ratios. The properties of the chitosan/gelatin nanocomposite and dopamine-loaded chitosan/gelatin nanocomposite were examined using XRD, FTIR, SEM, UV, TGA, TEM, and DLS techniques, and the crosslinking was confirmed. Higuchi kinetic release was seen with a cumulative release of 93% within 24 h for the 1:3 nanocomposite in a neutral medium. The peaks at 9 and 20° in the XRD spectrum confirmed the encapsulation of dopamine with the increase in the crystallinity of chitosan, which is also evident from the SAED image. The dopamine functional groups were confirmed from the IR peaks between 500 and 1500 cm-1 and the wide UV absorption maxima between 250 and 290 nm. The particle size of the drug-loaded composite in the ratios 1:1, 1:3, and 3:1 were calculated to be 275, 405, and 355 nm, respectively. The nanocomposite also showed favorable DPPH antioxidant and antibacterial activity againstStaphylococcus aureus. Sustained release of dopamine in a neutral medium using crosslinked chitosan and gelatin without the presence of a crosslinker is the highlight of the work.
Collapse
|
4
|
Kimura F, Kimura T. Magnetically textured powders—an alternative to single-crystal and powder X-ray diffraction methods. CrystEngComm 2018. [DOI: 10.1039/c7ce01305a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Structure determination of materials in their crystalline phase aids in the understanding and design of their functions.
Collapse
Affiliation(s)
- Fumiko Kimura
- Division of Forestry and Biomaterials
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Tsunehisa Kimura
- Division of Forestry and Biomaterials
- Kyoto University
- Kyoto 606-8502
- Japan
| |
Collapse
|
5
|
Yokoyama T, Hanawa Y, Obita T, Mizuguchi M. Stability and crystal structures of His88 mutant human transthyretins. FEBS Lett 2017; 591:1862-1871. [PMID: 28563699 DOI: 10.1002/1873-3468.12704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/18/2017] [Accepted: 05/26/2017] [Indexed: 11/08/2022]
Abstract
Destabilization of human transthyretin (TTR) has been implicated in its misfolding and aggregation. A previous study on the neutron crystal structure of TTR suggested that a large hydrogen bond network around H88 which includes water molecules is significantly involved in the stability of wild-type TTR (WT-TTR). Here, we demonstrate that the H88R mutant associated with amyloid cardiomyopathy is substantially destabilized compared with WT-TTR. In order to clarify the role of H88 and the hydrogen bond network in the stability of TTR, we determined the thermodynamic stability and the crystal structure of H88 mutants (H88A, H88F, H88Y, and H88S). Our results suggest that in some cases TTR is destabilized due to alterations in bound water molecules as well as structural changes in TTR itself.
Collapse
Affiliation(s)
| | - Yuma Hanawa
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan
| | - Takayuki Obita
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan
| | | |
Collapse
|
6
|
Blakeley MP, Hasnain SS, Antonyuk SV. Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential. IUCRJ 2015; 2:464-74. [PMID: 26175905 PMCID: PMC4491318 DOI: 10.1107/s2052252515011239] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/09/2015] [Indexed: 05/20/2023]
Abstract
The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å) has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden) and Sirius (Brazil) under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å), for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59%) were released since 2010. Sub-mm(3) crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å) are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H(+)) remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place. Neutron crystallography therefore remains the only approach where diffraction data can be collected at room temperature without radiation damage issues and the only approach to locate mobile or highly polarized H atoms and protons. Here a review of the current status of sub-atomic X-ray and neutron macromolecular crystallography is given and future prospects for combined approaches are outlined. New results from two metalloproteins, copper nitrite reductase and cytochrome c', are also included, which illustrate the type of information that can be obtained from sub-atomic-resolution (∼0.8 Å) X-ray structures, while also highlighting the need for complementary neutron studies that can provide details of H atoms not provided by X-ray crystallography.
Collapse
Affiliation(s)
- Matthew P. Blakeley
- Large-Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Samar S. Hasnain
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZX, UK
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZX, UK
| |
Collapse
|
7
|
Fisher SJ, Blakeley MP, Howard EI, Petit-Haertlein I, Haertlein M, Mitschler A, Cousido-Siah A, Salvay AG, Popov A, Muller-Dieckmann C, Petrova T, Podjarny A. Perdeuteration: improved visualization of solvent structure in neutron macromolecular crystallography. ACTA ACUST UNITED AC 2014; 70:3266-72. [DOI: 10.1107/s1399004714021610] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/30/2014] [Indexed: 11/10/2022]
Abstract
The 1.8 Å resolution neutron structure of deuterated type III antifreeze protein in which the methyl groups of leucine and valine residues are selectively protonated is presented. Comparison between this and the 1.85 Å resolution neutron structure of perdeuterated type III antifreeze protein indicates that perdeuteration improves the visibility of solvent molecules located in close vicinity to hydrophobic residues, as cancellation effects between H atoms of the methyl groups and nearby heavy-water molecules (D2O) are avoided.
Collapse
|