1
|
Guo S, Zeng M, Zhang C, Fan Y, Ran M, Song Z. Genome-wide characterization and comparative expression profiling of dual-specificity phosphatase genes in yellow catfish ( Pelteobagrus fulvidraco) after infection with exogenous Aeromonas hydrophila. Front Immunol 2024; 15:1481696. [PMID: 39606227 PMCID: PMC11598348 DOI: 10.3389/fimmu.2024.1481696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Dual-specificity phosphatases (DUSPs) are crucial regulators in many mammals, managing dephosphorylation and inactivation of mitogen-activated protein kinases (MAPKs) and playing essential roles in immune responses. However, their presence and functions in teleosts, like the yellow catfish (Pelteobagrus fulvidraco), remain unexplored. Methods In this study, eight pfDusp genes (pfDusp1-7 and pfDusp10) were identified in yellow catfish. We characterized their molecular features, conserved protein sequences, and chromosomal localization through genome-wide analyses, and we examined their expression patterns in immune responses. Results Our findings reveal two conserved motifs, Leu-Phe-Leu-Gly and Ala-Tyr-Leu-Met, within the DSPc domain of DUSP proteins. The genes were mapped across seven chromosomes without evidence of duplication. Comparative analysis showed high conservation of Dusp genes across vertebrates, with evolutionary analysis suggesting Dusp3 as a potential intermediate form. Dusp transcripts were significantly upregulated in the kidney post-A. hydrophila infection. Discussion These results suggest the involvement of Dusp genes in the immune response of yellow catfish to bacterial pathogens, providing insights into their evolutionary significance and potential applications in aquaculture and molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College
of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Szymanik KH, Hancks DC, Sullivan CS. Viral piracy of host RNA phosphatase DUSP11 by avipoxviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606876. [PMID: 39211142 PMCID: PMC11361023 DOI: 10.1101/2024.08.06.606876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Proper recognition of viral pathogens is an essential part of the innate immune response. A common viral replicative intermediate and chemical signal that cells use to identify pathogens is the presence of a triphosphorylated 5' end (5'ppp) RNA, which activates the cytosolic RNA sensor RIG-I and initiates downstream antiviral signaling. While 5'pppRNA generated by viral RNA-dependent RNA polymerases (RdRps) can be a potent activator of the immune response, endogenous RNA polymerase III (RNAPIII) transcripts can retain the 5'pppRNA generated during transcription and induce a RIG-I-mediated immune response. We have previously shown that host RNA triphosphatase dual-specificity phosphatase 11 (DUSP11) can act on both host and viral RNAs, altering their levels and reducing their ability to induce RIG-I activation. Our previous work explored how artificially altered DUSP11 can impact immune activation, prompting further exploration into natural contexts of altered DUSP11. Here, we have identified viral DUSP11 homologs (vDUSP11s) present in some avipoxviruses. Consistent with the known functions of endogenous DUSP11, we have shown that expression of vDUSP11s: 1) reduces levels of endogenous RNAPIII transcripts, 2) reduces a cell's sensitivity to 5'pppRNA-mediated immune activation, and 3) restores virus infection defects seen in the absence of DUSP11. Our results identify a virus-relevant context where DUSP11 activity has been co-opted to alter RNA metabolism and influence the outcome of infection.
Collapse
|
3
|
Dong J, Jassim BA, Milholland KL, Qu Z, Bai Y, Miao Y, Miao J, Ma Y, Lin J, Hall MC, Zhang ZY. Development of Novel Phosphonodifluoromethyl-Containing Phosphotyrosine Mimetics and a First-In-Class, Potent, Selective, and Bioavailable Inhibitor of Human CDC14 Phosphatases. J Med Chem 2024; 67:8817-8835. [PMID: 38768084 DOI: 10.1021/acs.jmedchem.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Together with protein tyrosine kinases, protein tyrosine phosphatases (PTPs) control protein tyrosine phosphorylation and regulate numerous cellular functions. Dysregulated PTP activity is associated with the onset of multiple human diseases. Nevertheless, understanding of the physiological function and disease biology of most PTPs remains limited, largely due to the lack of PTP-specific chemical probes. In this study, starting from a well-known nonhydrolyzable phosphotyrosine (pTyr) mimetic, phosphonodifluoromethyl phenylalanine (F2Pmp), we synthesized 7 novel phosphonodifluoromethyl-containing bicyclic/tricyclic aryl derivatives with improved cell permeability and potency toward various PTPs. Furthermore, with fragment- and structure-based design strategies, we advanced compound 9 to compound 15, a first-in-class, potent, selective, and bioavailable inhibitor of human CDC14A and B phosphatases. This study demonstrates the applicability of the fragment-based design strategy in creating potent, selective, and bioavailable PTP inhibitors and provides a valuable probe for interrogating the biological roles of hCDC14 phosphatases and assessing their potential for therapeutic interventions.
Collapse
Affiliation(s)
- Jiajun Dong
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brenson A Jassim
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kedric L Milholland
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zihan Qu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yiming Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinmin Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yuan Ma
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jianping Lin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Marciniak B, Kciuk M, Mujwar S, Sundaraj R, Bukowski K, Gruszka R. In Vitro and In Silico Investigation of BCI Anticancer Properties and Its Potential for Chemotherapy-Combined Treatments. Cancers (Basel) 2023; 15:4442. [PMID: 37760412 PMCID: PMC10526149 DOI: 10.3390/cancers15184442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND DUSP6 phosphatase serves as a negative regulator of MAPK kinases involved in numerous cellular processes. BCI has been identified as a potential allosteric inhibitor with anticancer activity. Our study was designed to test the anticancer properties of BCI in colon cancer cells, to characterize the effect of this compound on chemotherapeutics such as irinotecan and oxaliplatin activity, and to identify potential molecular targets for this inhibitor. METHODS BCI cytotoxicity, proapoptotic activity, and cell cycle distribution were investigated in vitro on three colon cancer cell lines (DLD1, HT-29, and Caco-2). In silico investigation was prepared to assess BCI drug-likeness and identify potential molecular targets. RESULTS The exposure of colorectal cancer cells with BCI resulted in antitumor effects associated with cell cycle arrest and induction of apoptosis. BCI exhibited strong cytotoxicity on DLD1, HT-29, and Caco-2 cells. BCI showed no significant interaction with irinotecan, but strongly attenuated the anticancer activity of oxaliplatin when administered together. Analysis of synergy potential further confirmed the antagonistic interaction between these two compounds. In silico investigation indicated CDK5 as a potential new target of BCI. CONCLUSIONS Our studies point to the anticancer potential of BCI but note the need for a precise mechanism of action.
Collapse
Affiliation(s)
- Beata Marciniak
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.K.); (K.B.); (R.G.)
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.K.); (K.B.); (R.G.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India;
| | - Rajamanikandan Sundaraj
- Centre for Drug Discovery, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India;
| | - Karol Bukowski
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.K.); (K.B.); (R.G.)
| | - Renata Gruszka
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.K.); (K.B.); (R.G.)
| |
Collapse
|
5
|
Munyaneza JP, Kim M, Cho E, Jang A, Choo HJ, Lee JH. Association of single-nucleotide polymorphisms in dual specificity phosphatase 8 and insulin-like growth factor 2 genes with inosine-5'-monophosphate, inosine, and hypoxanthine contents in chickens. Anim Biosci 2023; 36:1357-1366. [PMID: 37402464 PMCID: PMC10472161 DOI: 10.5713/ab.23.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 07/06/2023] Open
Abstract
OBJECTIVE This study aimed to identify the single-nucleotide polymorphisms (SNPs) in the dual-specificity phosphatase 8 (DUSP8) and insulin-like growth factor 2 (IGF2) genes and to explore their effects on inosine-5'-monophosphate (IMP), inosine, and hypoxanthine contents in Korean native chicken -red-brown line (KNC-R Line). METHODS A total sample of 284 (males, n = 127; females n = 157) and 230 (males, n = 106; females, n = 124) aged of 10 weeks old KNC-R line was used for genotyping of DUSP8 and IGF2 genes, respectively. One SNP (rs313443014 C>T) in DUSP8 gene and two SNPs (rs315806609A/G and rs313810945T/C) in IGF2 gene were used for genotyping by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and KASP methods, respectively. The Two-way analysis of variance of the R program was used to associate DUSP8 and IGF2 genotypes with nucleotide contents in KNC-R chickens. RESULTS The DUSP8 (rs313443014 C>T) was polymorphic in KNC-R line and showed three genotypes: CC, CT, and TT. The IGF2 gene (rs315806609A/G and rs313810945T/C) was also polymorphic and had three genotypes per SNP, including GG, AG, and AA for the SNP rs315806609A/G and genotypes: CC, CT, and TT for the SNP rs313810945T/C. Association resulted into a strong significant association (p<0.01) with IMP, inosine, and hypoxanthine. Moreover, the significant effect of sex (p<0.05) on nucleotide content was also observed. CONCLUSION The SNPs in the DUSP8 and IGF2 genes might be used as genetic markers in the selection and production of chickens with highly flavored meat.
Collapse
Affiliation(s)
- Jean Pierre Munyaneza
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
| | - Minjun Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
| | - Eunjin Cho
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134,
Korea
| | - Aera Jang
- Department of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Hyo Jun Choo
- Poultry Research Institute, National Institute of Animal Science, Pyeongchang 25342,
Korea
| | - Jun Heon Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
6
|
DaDalt AA, Bonham CA, Lotze GP, Luiso AA, Vacratsis PO. Src-mediated phosphorylation of the ribosome biogenesis factor hYVH1 affects its localization, promoting partitioning to the 60S ribosomal subunit. J Biol Chem 2022; 298:102679. [PMID: 36370849 PMCID: PMC9731860 DOI: 10.1016/j.jbc.2022.102679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Yeast VH1-related phosphatase (YVH1) (also known as DUSP12) is a member of the atypical dual-specificity phosphatase subfamily. Although no direct substrate has been firmly established, human YVH1 (hYVH1) has been shown to protect cells from cellular stressors, regulate the cell cycle, disassemble stress granules, and act as a 60S ribosome biogenesis factor. Despite knowledge of hYVH1 function, further research is needed to uncover mechanisms of its regulation. In this study, we investigate cellular effects of a Src-mediated phosphorylation site at Tyr179 on hYVH1. We observed that this phosphorylation event attenuates localization of hYVH1 to stress granules, enhances shuttling of hYVH1 to the nucleus, and promotes hYVH1 partitioning to the 60S ribosomal subunit. Quantitative proteomics reveal that Src coexpression with hYVH1 reduces formation of ribosomal species that represent stalled intermediates through the alteration of associating factors that mediate translational repression. Collectively, these results implicate hYVH1 as a novel Src substrate and provide the first demonstrated role of tyrosine phosphorylation regulating the activity of a YVH1 ortholog. Moreover, the ribosome proteome alterations point to a collaborative function of hYVH1 and Src in maintaining translational fitness.
Collapse
|
7
|
Netto LES, Machado LESF. Preferential redox regulation of cysteine‐based protein tyrosine phosphatases: structural and biochemical diversity. FEBS J 2022; 289:5480-5504. [DOI: 10.1111/febs.16466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Luís Eduardo S. Netto
- Departamento de Genética e Biologia Evolutiva Instituto de Biociências Universidade de São Paulo Brazil
| | | |
Collapse
|
8
|
Zang H, Shackelford R, Bewley A, Beeser AE. Mutational Analyses of the Cysteine-Rich Domain of Yvh1, a Protein Required for Translational Competency in Yeast. BIOLOGY 2022; 11:1246. [PMID: 36009873 PMCID: PMC9404827 DOI: 10.3390/biology11081246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
Ribosome assembly is a complex biological process facilitated by >200 trans-acting factors (TAFs) that function as scaffolds, place-holders or complex remodelers to promote efficient and directional ribosomal subunit assembly but are not themselves part of functional ribosomes. One such yeast TAF is encoded by Mrt4 which assembles onto pre-60S complexes in the nuclear compartment and remains bound to pre-60S complexes as they are exported into the cytoplasm. There, Mrt4 is displaced from pre-60S complexes facilitating the subsequent addition of the ribosomal stalk complex (P0/P1/P2). Ribosomal stalk proteins interact with translational GTPases (trGTPase) which facilitate and control protein synthesis on the ribosome. The rRNA-binding domain of Mrt4 is structurally similar to P0, with both proteins binding to the same interface of pre-60S subunits in a mutually exclusive manner; the addition of the ribosomal stalk therefore requires the displacement of Mrt4 from pre-60S subunits. Mrt4 removal requires the C-terminal cysteine-rich domain (CRD) of the dual-specificity phosphatase Yvh1. Unlike many other TAFs, yeast lacking Yvh1 are viable but retain Mrt4 on cytoplasmic pre-60S complexes precluding ribosomal stalk addition. Although Yvh1’s role in Mrt4 removal is well established, how Yvh1 accomplishes this is largely unknown. Here, we report an unbiased genetic screen to isolate Yvh1 variants that fail to displace Mrt4 from pre-60S ribosomes. Bioorthogonal non-canonical amino acid tagging (BONCAT) approaches demonstrate that these YVH1 loss-of-function variants also display defects in nascent protein production. The further characterization of one LOF variant, Yvh1F283L, establishes it as an expression-dependent, dominant-negative variant capable of interfering with endogenous Yvh1 function, and we describe how this Yvh1 variant can be used as a novel probe to better understand ribosome maturation and potentially ribosome heterogeneity in eukaryotes.
Collapse
Affiliation(s)
- Hannah Zang
- Duke University School of Medicine, Durham, NC 27708, USA
| | | | - Alice Bewley
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
9
|
The role and therapeutic implication of protein tyrosine phosphatases in Alzheimer's disease. Biomed Pharmacother 2022; 151:113188. [PMID: 35676788 DOI: 10.1016/j.biopha.2022.113188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 11/24/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) are important regulator of neuronal signal transduction and a growing number of PTPs have been implicated in Alzheimer's disease (AD). In the brains of patients with AD, there are a variety of abnormally phosphorylated proteins, which are closely related to the abnormal expression and activity of PTPs. β-Amyloid plaques (Aβ) and hyperphosphorylated tau protein are two pathological hallmarks of AD, and their accumulation ultimately leads to neurodegeneration. Studies have shown that protein phosphorylation signaling pathways mediates intracellular accumulation of Aβ and tau during AD development and are involved in synaptic plasticity and other stress responses. Here, we summarized the roles of PTPs related to the pathogenesis of AD and analyzed their therapeutic potential in AD.
Collapse
|
10
|
Gutierrez DA, Contreras L, Villanueva PJ, Borrego EA, Morán-Santibañez K, Hess JD, DeJesus R, Larragoity M, Betancourt AP, Mohl JE, Robles-Escajeda E, Begum K, Roy S, Kirken RA, Varela-Ramirez A, Aguilera RJ. Identification of a Potent Cytotoxic Pyrazole with Anti-Breast Cancer Activity That Alters Multiple Pathways. Cells 2022; 11:254. [PMID: 35053370 PMCID: PMC8773755 DOI: 10.3390/cells11020254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 11/26/2022] Open
Abstract
In this study, we identified a novel pyrazole-based derivative (P3C) that displayed potent cytotoxicity against 27 human cancer cell lines derived from different tissue origins with 50% cytotoxic concentrations (CC50) in the low micromolar and nanomolar range, particularly in two triple-negative breast cancer (TNBC) cell lines (from 0.25 to 0.49 µM). In vitro assays revealed that P3C induces reactive oxygen species (ROS) accumulation leading to mitochondrial depolarization and caspase-3/7 and -8 activation, suggesting the participation of both the intrinsic and extrinsic apoptotic pathways. P3C caused microtubule disruption, phosphatidylserine externalization, PARP cleavage, DNA fragmentation, and cell cycle arrest on TNBC cells. In addition, P3C triggered dephosphorylation of CREB, p38, ERK, STAT3, and Fyn, and hyperphosphorylation of JNK and NF-kB in TNBC cells, indicating the inactivation of both p38MAPK/STAT3 and ERK1/2/CREB signaling pathways. In support of our in vitro assays, transcriptome analyses of two distinct TNBC cell lines (MDA-MB-231 and MDA-MB-468 cells) treated with P3C revealed 28 genes similarly affected by the treatment implicated in apoptosis, oxidative stress, protein kinase modulation, and microtubule stability.
Collapse
Affiliation(s)
- Denisse A. Gutierrez
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Lisett Contreras
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Paulina J. Villanueva
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Edgar A. Borrego
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Karla Morán-Santibañez
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Jessica D. Hess
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Rebecca DeJesus
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Manuel Larragoity
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Ana P. Betancourt
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Jonathon E. Mohl
- Department of Bioinformatics, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA;
| | - Elisa Robles-Escajeda
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Khodeza Begum
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Sourav Roy
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Robert A. Kirken
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Armando Varela-Ramirez
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Renato J. Aguilera
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| |
Collapse
|
11
|
Beaumont VA, Reiss K, Qu Z, Allen B, Batista VS, Loria JP. Allosteric Impact of the Variable Insert Loop in Vaccinia H1-Related (VHR) Phosphatase. Biochemistry 2020; 59:1896-1908. [PMID: 32348128 PMCID: PMC7364816 DOI: 10.1021/acs.biochem.0c00245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynamics and conformational motions are important to the activity of enzymes, including protein tyrosine phosphatases. These motions often extend to regions outside the active site, called allosteric regions. In the tyrosine phosphatase Vaccinia H1-related (VHR) enzyme, we demonstrate the importance of the allosteric interaction between the variable insert region and the active-site loops in VHR. These studies include solution nuclear magnetic resonance, computation, steady-state, and rapid kinetic measurements. Overall, the data indicate concerted millisecond motions exist between the variable insert and the catalytic acid loop in wild-type (WT) VHR. The 150 ns computation studies show a flexible acid loop in WT VHR that opens during the simulation from its initial closed structure. Mutation of the variable insert residue, asparagine 74, to alanine results in a rigidification of the acid loop as observed by molecular dynamics simulations and a disruption of crucial active-site hydrogen bonds. Moreover, enzyme kinetic analysis shows a weakening of substrate affinity in the N74A mutant and a >2-fold decrease in substrate cleavage and hydrolysis rates. These data show that despite being nearly 20 Å from the active site, the variable insert region is linked to the acid loop by coupled millisecond motions, and that disruption of the communication between the variable insert and active site alters the normal catalytic function of VHR and perturbs the active-site environment.
Collapse
Affiliation(s)
- Victor A Beaumont
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Krystle Reiss
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Zexing Qu
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
- Institute for Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Brandon Allen
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - J Patrick Loria
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, United States
| |
Collapse
|
12
|
Chao Y, Wang C, Jia H, Zhai N, Wang H, Xu B, Li H, Guo X. Identification of an Apis cerana cerana MAP kinase phosphatase 3 gene (AccMKP3) in response to environmental stress. Cell Stress Chaperones 2019; 24:1137-1149. [PMID: 31664697 PMCID: PMC6882995 DOI: 10.1007/s12192-019-01036-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/23/2019] [Accepted: 09/23/2019] [Indexed: 12/26/2022] Open
Abstract
MAP kinase phosphatase 3 (MKP3), a member of the dual-specificity protein phosphatase (DUSP) superfamily, has been widely studied for its role in development, cancer, and environmental stress in many organisms. However, the functions of MKP3 in various insects have not been well studied, including honeybees. In this study, we isolated an MKP3 gene from Apis cerana cerana and explored the role of this gene in the resistance to oxidation. We found that AccMKP3 is highly conserved in different species and shares the closest evolutionary relationship with AmMKP3. We determined the expression patterns of AccMKP3 under various stresses. qRT-PCR results showed that AccMKP3 was highly expressed during the pupal stages and in adult muscles. We further found that AccMKP3 was induced in all the stress treatments. Moreover, we discovered that the enzymatic activities of peroxidase, superoxide dismutase, and catalase increased and that the expression levels of several antioxidant genes were affected after AccMKP3 was knocked down. Collectively, these results suggest that AccMKP3 may be associated with antioxidant processes involved in response to various environmental stresses.
Collapse
Affiliation(s)
- Yuzhen Chao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Haihong Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Na Zhai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
13
|
Ding T, Zhou Y, Long R, Chen C, Zhao J, Cui P, Guo M, Liang G, Xu L. DUSP8 phosphatase: structure, functions, expression regulation and the role in human diseases. Cell Biosci 2019; 9:70. [PMID: 31467668 PMCID: PMC6712826 DOI: 10.1186/s13578-019-0329-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/12/2019] [Indexed: 12/28/2022] Open
Abstract
Dual-specificity phosphatases (DUSPs) are a subset of protein tyrosine phosphatases (PTPs), many of which dephosphorylate the residues of phosphor-serine/threonine and phosphor-tyrosine on mitogen-activated protein kinases (MAPKs), and hence are also referred to as MAPK phosphatases (MKPs). Homologue of Vaccinia virus H1 phosphatase gene clone 5 (HVH-5), also known as DUSP8, is a unique member of the DUSPs family of phosphatases. Accumulating evidence has shown that DUSP8 plays an important role in phosphorylation-mediated signal transduction of MAPK signaling ranging from cell oxidative stress response, cell apoptosis and various human diseases. It is generally believed that DUSP8 exhibits significant dephosphorylation activity against JNK, however, with the deepening of research, plenty of new literature reports that DUSP8 also has effective dephosphorylation activity on p38 MAPK and ERKs, successfully affects the transduction of MAPKs pathway, indicating that DUSP8 presents a unknown diversity of DUSPs family on distinct corresponding dephosphorylated substrates in different biological events. Therefore, the in-depth study of DUSP8 not only throws a new light on the multi-biological function of DUSPs, but also is much valuable for the reveal of complex pathobiology of clinical diseases. In this review, we provide a detail overview of DUSP8 phosphatase structure, biological function and expression regulation, as well as its role in related clinical human diseases, which might be help for the understanding of biological function of DUSP8 and the development of prevention, diagnosis and therapeutics in related human diseases.
Collapse
Affiliation(s)
- Tao Ding
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China.,2Department of Immunology, Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Ya Zhou
- 3Department of Medical Physics, Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Runying Long
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China.,2Department of Immunology, Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China
| | - Panpan Cui
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China
| | - Guiyou Liang
- 4Department of Cardiovascular Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou China.,5Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China.,2Department of Immunology, Zunyi Medical University, Zunyi, 563000 Guizhou China
| |
Collapse
|
14
|
Yeon Kim B, Hee Yoon J, Kim M, Nyoung Kim J, Park H, Eon Ryu S, Lee S. Synthesis and biological evaluation of acylthiourea against DUSP1 inhibition. Bioorg Med Chem Lett 2019; 29:1746-1748. [PMID: 31103445 DOI: 10.1016/j.bmcl.2019.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/01/2019] [Accepted: 05/13/2019] [Indexed: 01/29/2023]
Abstract
Structure based virtual screening attempts to discover DUSP1 inhibitors have yielded a scaffold featuring benzoxazole and acylthiourea pharmacophore. A series of its analogues were synthesized to explore structure activity relationship (SAR) of DUSP1 inhibition.
Collapse
Affiliation(s)
- Bo Yeon Kim
- Anticancer Agent Research Center, KRIBB, Cheongju 28116, Republic of Korea
| | - Ji Hee Yoon
- Anticancer Agent Research Center, KRIBB, Cheongju 28116, Republic of Korea
| | - Myeongbin Kim
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jae Nyoung Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Seong Eon Ryu
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Sangku Lee
- Anticancer Agent Research Center, KRIBB, Cheongju 28116, Republic of Korea.
| |
Collapse
|
15
|
Javadpour P, Dargahi L, Ahmadiani A, Ghasemi R. To be or not to be: PP2A as a dual player in CNS functions, its role in neurodegeneration, and its interaction with brain insulin signaling. Cell Mol Life Sci 2019; 76:2277-2297. [PMID: 30874837 PMCID: PMC11105459 DOI: 10.1007/s00018-019-03063-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/16/2019] [Accepted: 03/07/2019] [Indexed: 12/26/2022]
Abstract
Accumulating evidence has reached the consensus that the balance of phosphorylation state of signaling molecules is a pivotal point in the regulation of cell signaling. Therefore, characterizing elements (kinases-phosphatases) in the phosphorylation balance are at great importance. However, the role of phosphatase enzymes is less investigated than kinase enzymes. PP2A is a member of serine/threonine protein phosphatase that its imbalance has been reported in neurodegenerative diseases. Therefore, we reviewed the superfamily of phosphatases and more specifically PP2A, its regulation, and physiological functions participate in CNS. Thereafter, we discussed the latest findings about PP2A dysregulation in Alzheimer and Parkinson diseases and possible interplay between this phosphatase and insulin signaling pathways. Finally, activating/inhibitory modulators for PP2A activity as well as experimental methods for PP2A study have been reviewed.
Collapse
Affiliation(s)
- Pegah Javadpour
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Huang G, Oliver MR, Keown JR, Goldstone DC, Metcalf P. Crystal structure of protein tyrosine phosphatase-2 from Cydia pomonella granulovirus. Acta Crystallogr F Struct Biol Commun 2019; 75:233-238. [PMID: 30950823 PMCID: PMC6450516 DOI: 10.1107/s2053230x19002322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/13/2019] [Indexed: 11/10/2022] Open
Abstract
Many viral genomes encode kinase and phosphatase enzymes to manipulate pathways that are controlled by phosphorylation events. The majority of viral phosphatase genes occur in the Baculoviridae and Poxviridae families of large DNA viruses. The corresponding protein sequences belong to four major homology groups, and structures are currently available for only two of these. Here, the first structure from the third group, the protein tyrosine phosphatase-2 (PTP-2) class of viral phosphatases, is described. It is shown that Cydia pomonella granulovirus PTP-2 has the same general fold and active-site architecture as described previously for other phosphatases, in the absence of significant sequence homology. Additionally, it has a novel C-terminal extension in an area corresponding to the interface of dimeric poxvirus phosphatases belonging to the Tyr-Ser protein phosphatase homology group.
Collapse
Affiliation(s)
- Guangmei Huang
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Michael R. Oliver
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jeremy R. Keown
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Division of Structural Biology, University of Oxford, Oxford, England
| | - David C. Goldstone
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Peter Metcalf
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
17
|
Virtual Screening and Biochemical Evaluation to Identify the Allosteric Inhibitors of Dual Specificity Phosphatase 1. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Gumpena R, Lountos GT, Waugh DS. MBP-binding DARPins facilitate the crystallization of an MBP fusion protein. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2018; 74:549-557. [PMID: 30198887 PMCID: PMC6130421 DOI: 10.1107/s2053230x18009901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/10/2018] [Indexed: 12/02/2022]
Abstract
Designed ankyrin-repeat proteins (DARPins) that bind to maltose-binding protein (MBP) with high affinity can facilitate the crystallization of an MBP fusion protein. The use of MBP-specific DARPins increases the probability of obtaining crystals. The production of high-quality crystals is the main bottleneck in determining the structures of proteins using X-ray crystallography. In addition to being recognized as a very effective solubility-enhancing fusion partner, Escherichia coli maltose-binding protein (MBP) has also been successfully employed as a ‘fixed-arm’ crystallization chaperone in more than 100 cases. Here, it is reported that designed ankyrin-repeat proteins (DARPins) that bind with high affinity to MBP can promote the crystallization of an MBP fusion protein when the fusion protein alone fails to produce diffraction-quality crystals. As a proof of principle, three different co-crystal structures of MBP fused to the catalytic domain of human dual-specificity phosphatase 1 in complex with DARPins are reported.
Collapse
Affiliation(s)
- Rajesh Gumpena
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - George T Lountos
- Macromolecular Crystallography Laboratory, Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - David S Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
19
|
Structural study reveals the temperature-dependent conformational flexibility of Tk-PTP, a protein tyrosine phosphatase from Thermococcus kodakaraensis KOD1. PLoS One 2018; 13:e0197635. [PMID: 29791483 PMCID: PMC5965843 DOI: 10.1371/journal.pone.0197635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/05/2018] [Indexed: 11/19/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) originating from eukaryotes or bacteria have been under intensive structural and biochemical investigation, whereas archaeal PTP proteins have not been investigated extensively; therefore, they are poorly understood. Here, we present the crystal structures of Tk-PTP derived from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1, in both the active and inactive forms. Tk-PTP adopts a common dual-specificity phosphatase (DUSP) fold, but it undergoes an atypical temperature-dependent conformational change in its P-loop and α4−α5 loop regions, switching between the inactive and active forms. Through comprehensive analyses of Tk-PTP, including additional structural determination of the G95A mutant form, enzymatic activity assays, and structural comparison with the other archaeal PTP, it was revealed that the presence of the GG motif in the P-loop is necessary but not sufficient for the structural flexibility of Tk-PTP. It was also proven that Tk-PTP contains dual general acid/base residues unlike most of the other DUSP proteins, and that both the residues are critical in its phosphatase activity. This work provides the basis for expanding our understanding of the previously uncharacterized PTP proteins from archaea, the third domain of living organisms.
Collapse
|
20
|
Wang H, Gu C, Rolfes RJ, Jessen HJ, Shears SB. Structural and biochemical characterization of Siw14: A protein-tyrosine phosphatase fold that metabolizes inositol pyrophosphates. J Biol Chem 2018; 293:6905-6914. [PMID: 29540476 PMCID: PMC5936820 DOI: 10.1074/jbc.ra117.001670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/26/2018] [Indexed: 01/09/2023] Open
Abstract
Inositol pyrophosphates (PP-InsPs) are "energetic" intracellular signals that are ubiquitous in animals, plants, and fungi; structural and biochemical characterization of PP-InsP metabolic enzymes provides insight into their evolution, reaction mechanisms, and regulation. Here, we describe the 2.35-Å-resolution structure of the catalytic core of Siw14, a 5-PP-InsP phosphatase from Saccharomyces cerevisiae and a member of the protein tyrosine-phosphatase (PTP) superfamily. Conclusions that we derive from structural data are supported by extensive site-directed mutagenesis and kinetic analyses, thereby attributing new functional significance to several key residues. We demonstrate the high activity and exquisite specificity of Siw14 for the 5-diphosphate group of PP-InsPs. The three structural elements that demarcate a 9.2-Å-deep substrate-binding pocket each have spatial equivalents in PTPs, but we identify how these are specialized for Siw14 to bind and hydrolyze the intensely negatively charged PP-InsPs. (a) The catalytic P-loop with the CX5R(S/T) PTP motif contains additional, positively charged residues. (b) A loop between the α5 and α6 helices, corresponding to the Q-loop in PTPs, contains a lysine and an arginine that extend into the catalytic pocket due to displacement of the α5 helix orientation through intramolecular crowding caused by three bulky, hydrophobic residues. (c) The general-acid loop in PTPs is replaced in Siw14 with a flexible loop that does not use an aspartate or glutamate as a general acid. We propose that an acidic residue is not required for phosphoanhydride hydrolysis.
Collapse
Affiliation(s)
- Huanchen Wang
- From the Inositol Signaling Group, Signal Transduction Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, , To whom correspondence should be addressed:
Signal Transduction Laboratory, NIEHS, National Institutes of Health, 111 T. W. Alexander Dr., Research Triangle Park, NC 27709. E-mail:
| | - Chunfang Gu
- From the Inositol Signaling Group, Signal Transduction Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Ronda J. Rolfes
- Department of Biology, Georgetown University, Washington, D. C. 20057, and
| | - Henning J. Jessen
- Institute of Organic Chemistry, Albert Ludwigs University, Freiburg, 79104 Freiburg, Germany
| | - Stephen B. Shears
- From the Inositol Signaling Group, Signal Transduction Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| |
Collapse
|
21
|
Ku B, Hong W, Keum CW, Kim M, Ryu H, Jeon D, Shin HC, Kim JH, Kim SJ, Ryu SE. Structural and biochemical analysis of atypically low dephosphorylating activity of human dual-specificity phosphatase 28. PLoS One 2017; 12:e0187701. [PMID: 29121083 PMCID: PMC5679558 DOI: 10.1371/journal.pone.0187701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Abstract
Dual-specificity phosphatases (DUSPs) constitute a subfamily of protein tyrosine phosphatases, and are intimately involved in the regulation of diverse parameters of cellular signaling and essential biological processes. DUSP28 is one of the DUSP subfamily members that is known to be implicated in the progression of hepatocellular and pancreatic cancers, and its biological functions and enzymatic characteristics are mostly unknown. Herein, we present the crystal structure of human DUSP28 determined to 2.1 Å resolution. DUSP28 adopts a typical DUSP fold, which is composed of a central β-sheet covered by α-helices on both sides and contains a well-ordered activation loop, as do other enzymatically active DUSP proteins. The catalytic pocket of DUSP28, however, appears hardly accessible to a substrate because of the presence of nonconserved bulky residues in the protein tyrosine phosphatase signature motif. Accordingly, DUSP28 showed an atypically low phosphatase activity in the biochemical assay, which was remarkably improved by mutations of two nonconserved residues in the activation loop. Overall, this work reports the structural and biochemical basis for understanding a putative oncological therapeutic target, DUSP28, and also provides a unique mechanism for the regulation of enzymatic activity in the DUSP subfamily proteins.
Collapse
Affiliation(s)
- Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
| | - Won Hong
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chae Won Keum
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
| | - Myeongbin Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyunyeol Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Donghwan Jeon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jae Hoon Kim
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju-do, Republic of Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- * E-mail: (SJK); (SER)
| | - Seong Eon Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
- * E-mail: (SJK); (SER)
| |
Collapse
|
22
|
Lu C, Liu X, Zhang CS, Gong H, Wu JW, Wang ZX. Structural and Dynamic Insights into the Mechanism of Allosteric Signal Transmission in ERK2-Mediated MKP3 Activation. Biochemistry 2017; 56:6165-6175. [PMID: 29077400 DOI: 10.1021/acs.biochem.7b00827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mitogen-activated protein kinases (MAPKs) are key components of cellular signal transduction pathways, which are down-regulated by the MAPK phosphatases (MKPs). Catalytic activity of the MKPs is controlled both by their ability to recognize selective MAPKs and by allosteric activation upon binding to MAPK substrates. Here, we use a combination of experimental and computational techniques to elucidate the molecular mechanism for the ERK2-induced MKP3 activation. Mutational and kinetic study shows that the 334FNFM337 motif in the MKP3 catalytic domain is essential for MKP3-mediated ERK2 inactivation and is responsible for ERK2-mediated MKP3 activation. The long-term molecular dynamics (MD) simulations further reveal a complete dynamic process in which the catalytic domain of MKP3 gradually changes to a conformation that resembles an active MKP catalytic domain over the time scale of the simulation, providing a direct time-dependent observation of allosteric signal transmission in ERK2-induced MKP3 activation.
Collapse
Affiliation(s)
- Chang Lu
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University , Beijing 100084, PR China
| | - Xin Liu
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University , Beijing 100084, PR China
| | - Chen-Song Zhang
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University , Xiamen, Fujian 361005, PR China
| | - Haipeng Gong
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University , Beijing 100084, PR China
| | - Jia-Wei Wu
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University , Beijing 100084, PR China
| | - Zhi-Xin Wang
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University , Beijing 100084, PR China
| |
Collapse
|
23
|
Wei CH, Min HG, Kim M, Kim GH, Chun HJ, Ryu SE. Two intermediate states of the conformational switch in dual specificity phosphatase 13a. Pharmacol Res 2017; 128:211-219. [PMID: 29106959 DOI: 10.1016/j.phrs.2017.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
Abstract
Dual specificity phosphatases (DUSPs) include MAP kinase phosphatases and atypical dual specificity phosphatases and mediate cell growth and differentiation, brain function, and immune responses. They serve as targets for drug development against cancers, diabetes and depression. Several DUSPs have non-canonical conformation of the central β-sheet and active site loops, suggesting that they may have conformational switch that is related to the regulation of enzyme activity. Here, we determined the crystal structure of DUSP13a, and identified two different structures that represent intermediates of the postulated conformational switch. Amino acid sequence of DUSP13a is not significantly homologous to DUSPs with conformational switch, indicating that the conformational switch is not sequence-dependent, but rather determined by ligand interaction. The sequence-independency suggests that other DUSPs with canonical conformation may have the conformational switch during specific cellular regulation. The conformational switch leads to significant changes in the protein surface, including a hydrophobic surface and pockets, which can be exploited for development of allosteric modulators of drug target DUSPs.
Collapse
Affiliation(s)
- Chun Hwa Wei
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Hee Gyeong Min
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Myeongbin Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Gwan Hee Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Ha-Jung Chun
- Department of Radiation onclogy, College of Medicine, Hanyang University, Seoul, Korea
| | - Seong Eon Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea.
| |
Collapse
|
24
|
Gumpena R, Lountos GT, Raran-Kurussi S, Tropea JE, Cherry S, Waugh DS. Crystal structure of the human dual specificity phosphatase 1 catalytic domain. Protein Sci 2017; 27:561-567. [PMID: 29052270 DOI: 10.1002/pro.3328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 01/29/2023]
Abstract
The dual specificity phosphatase DUSP1 was the first mitogen activated protein kinase phosphatase (MKP) to be identified. It dephosphorylates conserved tyrosine and threonine residues in the activation loops of mitogen activated protein kinases ERK2, JNK1 and p38-alpha. Here, we report the crystal structure of the human DUSP1 catalytic domain at 2.49 Å resolution. Uniquely, the protein was crystallized as an MBP fusion protein in complex with a monobody that binds to MBP. Sulfate ions occupy the phosphotyrosine and putative phosphothreonine binding sites in the DUSP1 catalytic domain.
Collapse
Affiliation(s)
- Rajesh Gumpena
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702
| | - George T Lountos
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702.,Frederick National Laboratory for Cancer Research, Basic Science Program, Leidos Biomedical Research, Inc, Frederick, 21702, MD
| | - Sreejith Raran-Kurussi
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702.,TIFR Centre for Interdisciplinary Sciences, Hyderabad, 500075, India
| | - Joseph E Tropea
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702
| | - Scott Cherry
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702
| | - David S Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702
| |
Collapse
|
25
|
Bhore N, Wang BJ, Chen YW, Liao YF. Critical Roles of Dual-Specificity Phosphatases in Neuronal Proteostasis and Neurological Diseases. Int J Mol Sci 2017; 18:ijms18091963. [PMID: 28902166 PMCID: PMC5618612 DOI: 10.3390/ijms18091963] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 12/31/2022] Open
Abstract
Protein homeostasis or proteostasis is a fundamental cellular property that encompasses the dynamic balancing of processes in the proteostasis network (PN). Such processes include protein synthesis, folding, and degradation in both non-stressed and stressful conditions. The role of the PN in neurodegenerative disease is well-documented, where it is known to respond to changes in protein folding states or toxic gain-of-function protein aggregation. Dual-specificity phosphatases have recently emerged as important participants in maintaining balance within the PN, acting through modulation of cellular signaling pathways that are involved in neurodegeneration. In this review, we will summarize recent findings describing the roles of dual-specificity phosphatases in neurodegeneration and offer perspectives on future therapeutic directions.
Collapse
Affiliation(s)
- Noopur Bhore
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Bo-Jeng Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Yun-Wen Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Yung-Feng Liao
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
26
|
Kutty RG, Talipov MR, Bongard RD, Lipinski RAJ, Sweeney NL, Sem DS, Rathore R, Ramchandran R. Dual Specificity Phosphatase 5-Substrate Interaction: A Mechanistic Perspective. Compr Physiol 2017; 7:1449-1461. [PMID: 28915331 DOI: 10.1002/cphy.c170007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mammalian genome contains approximately 200 phosphatases that are responsible for catalytically removing phosphate groups from proteins. In this review, we discuss dual specificity phosphatase 5 (DUSP5). DUSP5 belongs to the dual specificity phosphatase (DUSP) family, so named after the family members' abilities to remove phosphate groups from serine/threonine and tyrosine residues. We provide a comparison of DUSP5's structure to other DUSPs and, using molecular modeling studies, provide an explanation for DUSP5's mechanistic interaction and specificity toward phospho-extracellular regulated kinase, its only known substrate. We also discuss new insights from molecular modeling studies that will influence our current thinking of mitogen-activated protein kinase signaling. Finally, we discuss the lessons learned from identifying small molecules that target DUSP5, which might benefit targeting efforts for other phosphatases. © 2017 American Physiological Society. Compr Physiol 7:1449-1461, 2017.
Collapse
Affiliation(s)
- Raman G Kutty
- Department of Pediatrics, Division of Neonatology, Department of Obstetrics and Gynecology, Developmental Vascular Biology Program, Translational and Biomedical Research Center, Milwaukee, Wisconsin, USA
| | - Marat R Talipov
- New Mexico State University, Department of Chemistry and Biochemistry, Las Cruces, New Mexico, USA
| | - Robert D Bongard
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University of Wisconsin, Mequon, Wisconsin, USA
| | - Rachel A Jones Lipinski
- Department of Pediatrics, Division of Neonatology, Department of Obstetrics and Gynecology, Developmental Vascular Biology Program, Translational and Biomedical Research Center, Milwaukee, Wisconsin, USA.,Department of Chemistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Noreena L Sweeney
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University of Wisconsin, Mequon, Wisconsin, USA
| | - Daniel S Sem
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University of Wisconsin, Mequon, Wisconsin, USA
| | - Rajendra Rathore
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Ramani Ramchandran
- Department of Pediatrics, Division of Neonatology, Department of Obstetrics and Gynecology, Developmental Vascular Biology Program, Translational and Biomedical Research Center, Milwaukee, Wisconsin, USA
| |
Collapse
|
27
|
Won EY, Lee SO, Lee DH, Lee D, Bae KH, Lee SC, Kim SJ, Chi SW. Structural Insight into the Critical Role of the N-Terminal Region in the Catalytic Activity of Dual-Specificity Phosphatase 26. PLoS One 2016; 11:e0162115. [PMID: 27583453 PMCID: PMC5008780 DOI: 10.1371/journal.pone.0162115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/17/2016] [Indexed: 11/18/2022] Open
Abstract
Human dual-specificity phosphatase 26 (DUSP26) is a novel target for anticancer therapy because its dephosphorylation of the p53 tumor suppressor regulates the apoptosis of cancer cells. DUSP26 inhibition results in neuroblastoma cell cytotoxicity through p53-mediated apoptosis. Despite the previous structural studies of DUSP26 catalytic domain (residues 61-211, DUSP26-C), the high-resolution structure of its catalytically active form has not been resolved. In this study, we determined the crystal structure of a catalytically active form of DUSP26 (residues 39-211, DUSP26-N) with an additional N-terminal region at 2.0 Å resolution. Unlike the C-terminal domain-swapped dimeric structure of DUSP26-C, the DUSP26-N (C152S) monomer adopts a fold-back conformation of the C-terminal α8-helix and has an additional α1-helix in the N-terminal region. Consistent with the canonically active conformation of its protein tyrosine phosphate-binding loop (PTP loop) observed in the structure, the phosphatase assay results demonstrated that DUSP26-N has significantly higher catalytic activity than DUSP26-C. Furthermore, size exclusion chromatography-multiangle laser scattering (SEC-MALS) measurements showed that DUSP26-N (C152S) exists as a monomer in solution. Notably, the crystal structure of DUSP26-N (C152S) revealed that the N-terminal region of DUSP26-N (C152S) serves a scaffolding role by positioning the surrounding α7-α8 loop for interaction with the PTP-loop through formation of an extensive hydrogen bond network, which seems to be critical in making the PTP-loop conformation competent for phosphatase activity. Our study provides the first high-resolution structure of a catalytically active form of DUSP26, which will contribute to the structure-based rational design of novel DUSP26-targeting anticancer therapeutics.
Collapse
Affiliation(s)
- Eun-Young Won
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sang-Ok Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Dong-Hwa Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- * E-mail: (SWC); (SJK)
| | - Seung-Wook Chi
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- * E-mail: (SWC); (SJK)
| |
Collapse
|
28
|
Ku B, Keum CW, Lee HS, Yun HY, Shin HC, Kim BY, Kim SJ. Crystal structure of SP-PTP, a low molecular weight protein tyrosine phosphatase from Streptococcus pyogenes. Biochem Biophys Res Commun 2016; 478:1217-22. [PMID: 27545603 DOI: 10.1016/j.bbrc.2016.08.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/17/2016] [Indexed: 11/25/2022]
Abstract
Streptococcus pyogenes, or Group A Streptococcus (GAS), is a pathogenic bacterium that causes a variety of infectious diseases. The GAS genome encodes one protein tyrosine phosphatase, SP-PTP, which plays an essential role in the replication and virulence maintenance of GAS. Herein, we present the crystal structure of SP-PTP at 1.9 Å resolution. Although SP-PTP has been reported to have dual phosphatase specificity for both phosphorylated tyrosine and serine/threonine, three-dimensional structural analysis showed that SP-PTP shares high similarity with typical low molecular weight protein tyrosine phosphatases (LMWPTPs), which are specific for phosphotyrosine, but not with dual-specificity phosphatases, in overall folding and active site composition. In the dephosphorylation activity test, SP-PTP consistently acted on phosphotyrosine substrates, but not or only minimally on phosphoserine/phosphothreonine substrates. Collectively, our structural and biochemical analyses verified SP-PTP as a canonical tyrosine-specific LMWPTP.
Collapse
Affiliation(s)
- Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea.
| | - Chae Won Keum
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Hye Seon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Hye-Yeoung Yun
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Bo Yeon Kim
- Incurable Diseases Therapeutics Research Center, World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Republic of Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
29
|
Dual-Specificity Phosphatase 4 Regulates STAT5 Protein Stability and Helper T Cell Polarization. PLoS One 2015; 10:e0145880. [PMID: 26710253 PMCID: PMC4692422 DOI: 10.1371/journal.pone.0145880] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 12/09/2015] [Indexed: 11/23/2022] Open
Abstract
Immune responses are critically regulated by the functions of CD4 helper T cells. Based on their secreted cytokines, helper T cells are further categorized into different subsets like Treg or Th17 cells, which suppress or promote inflammatory responses, respectively. Signals from IL-2 activate the transcription factor STAT5 to promote Treg but suppress Th17 cell differentiation. Our previous results found that the deficiency of a dual-specificity phosphatase, DUSP4, induced STAT5 hyper-activation, enhanced IL-2 signaling, and increased T cell proliferation. In this report, we examined the effects of DUSP4 deficiency on helper T cell differentiation and STAT5 regulation. Our in vivo data showed that DUSP4 mice were more resistant to the induction of autoimmune encephalitis, while in vitro differentiations revealed enhanced iTreg and reduced Th17 polarization in DUSP4-deficient T cells. To study the cause of this altered helper T cell polarization, we performed luciferase reporter assays and confirmed that, as predicted by our previous report, DUSP4 over-expression suppressed the transcription factor activity of STAT5. Surprisingly, we also found that DUSP4-deficient T but not B cells exhibited elevated STAT5 protein levels, and over-expressed DUSP4 destabilized STAT5 in vitro; moreover, this destabilization required the phosphatase activity of DUSP4, and was insensitive to MG132 treatment. Finally, domain-mapping results showed that both the substrate-interacting and the phosphatase domains of DUSP4 were required for its optimal interaction with STAT5, while the coiled-coil domain of STAT5 appeared to hinder this interaction. Our data thus provide the first genetic evidence that DUSP4 is important for helper T cell development. In addition, they also help uncover the novel, DUSP4-mediated regulation of STAT5 protein stability.
Collapse
|
30
|
Seo H, Cho S. PTP Inhibitor V Inhibits Dual-specificity Phosphatase 22 (DUSP22) Activity. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Huiyun Seo
- College of Pharmacy; Chung-Ang University; Seoul 156-756 Republic of Korea
| | - Sayeon Cho
- College of Pharmacy; Chung-Ang University; Seoul 156-756 Republic of Korea
| |
Collapse
|
31
|
Lountos GT, Austin BP, Tropea JE, Waugh DS. Structure of human dual-specificity phosphatase 7, a potential cancer drug target. Acta Crystallogr F Struct Biol Commun 2015; 71:650-6. [PMID: 26057789 PMCID: PMC4461324 DOI: 10.1107/s2053230x1500504x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/12/2015] [Indexed: 11/10/2022] Open
Abstract
Human dual-specificity phosphatase 7 (DUSP7/Pyst2) is a 320-residue protein that belongs to the mitogen-activated protein kinase phosphatase (MKP) subfamily of dual-specificity phosphatases. Although its precise biological function is still not fully understood, previous reports have demonstrated that DUSP7 is overexpressed in myeloid leukemia and other malignancies. Therefore, there is interest in developing DUSP7 inhibitors as potential therapeutic agents, especially for cancer. Here, the purification, crystallization and structure determination of the catalytic domain of DUSP7 (Ser141-Ser289/C232S) at 1.67 Å resolution are reported. The structure described here provides a starting point for structure-assisted inhibitor-design efforts and adds to the growing knowledge base of three-dimensional structures of the dual-specificity phosphatase family.
Collapse
Affiliation(s)
- George T. Lountos
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, PO Box B, Frederick, MD 21702, USA
| | - Brian P. Austin
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, PO Box B, Frederick, MD 21702, USA
| | - Joseph E. Tropea
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, PO Box B, Frederick, MD 21702, USA
| | - David S. Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, PO Box B, Frederick, MD 21702, USA
| |
Collapse
|
32
|
Lountos GT, Cherry S, Tropea JE, Waugh DS. Structural analysis of human dual-specificity phosphatase 22 complexed with a phosphotyrosine-like substrate. Acta Crystallogr F Struct Biol Commun 2015; 71:199-205. [PMID: 25664796 PMCID: PMC4321476 DOI: 10.1107/s2053230x15000217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/06/2015] [Indexed: 02/08/2023] Open
Abstract
4-Nitrophenyl phosphate (p-nitrophenyl phosphate, pNPP) is widely used as a small molecule phosphotyrosine-like substrate in activity assays for protein tyrosine phosphatases. It is a colorless substrate that upon hydrolysis is converted to a yellow 4-nitrophenolate ion that can be monitored by absorbance at 405 nm. Therefore, the pNPP assay has been widely adopted as a quick and simple method to assess phosphatase activity and is also commonly used in assays to screen for inhibitors. Here, the first crystal structure is presented of a dual-specificity phosphatase, human dual-specificity phosphatase 22 (DUSP22), in complex with pNPP. The structure illuminates the molecular basis for substrate binding and may also facilitate the structure-assisted development of DUSP22 inhibitors.
Collapse
Affiliation(s)
- George T. Lountos
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Scott Cherry
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Joseph E. Tropea
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - David S. Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
33
|
WANG DONG, HAN SHENG, PENG RUI, JIAO CHENYU, WANG XING, HAN ZEGUANG, LI XIANGCHENG. DUSP28 contributes to human hepatocellular carcinoma via regulation of the p38 MAPK signaling. Int J Oncol 2014; 45:2596-604. [DOI: 10.3892/ijo.2014.2653] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/30/2014] [Indexed: 11/06/2022] Open
|