1
|
Polonsky K, Pupko T, Freund NT. Evaluation of the Ability of AlphaFold to Predict the Three-Dimensional Structures of Antibodies and Epitopes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1578-1588. [PMID: 37782047 DOI: 10.4049/jimmunol.2300150] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023]
Abstract
Being able to accurately predict the three-dimensional structure of an Ab can facilitate Ab characterization and epitope prediction, with important diagnostic and clinical implications. In this study, we evaluated the ability of AlphaFold to predict the structures of 222 recently published, high-resolution Fab H and L chain structures of Abs from different species directed against different Ags. We show that although the overall Ab prediction quality is in line with the results of CASP14, regions such as the complementarity-determining regions (CDRs) of the H chain, which are prone to higher variation, are predicted less accurately. Moreover, we discovered that AlphaFold mispredicts the bending angles between the variable and constant domains. To evaluate the ability of AlphaFold to model Ab-Ag interactions based only on sequence, we used AlphaFold-Multimer in combination with ZDOCK to predict the structures of 26 known Ab-Ag complexes. ZDOCK, which was applied on bound components of both the Ab and the Ag, succeeded in assembling 11 complexes, whereas AlphaFold succeeded in predicting only 2 of 26 models, with significant deviations in the docking contacts predicted in the rest of the molecules. Within the 11 complexes that were successfully predicted by ZDOCK, 9 involved short-peptide Ags (18-mer or less), whereas only 2 were complexes of Ab with a full-length protein. Docking of modeled unbound Ab and Ag was unsuccessful. In summary, our study provides important information about the abilities and limitations of using AlphaFold to predict Ab-Ag interactions and suggests areas for possible improvement.
Collapse
Affiliation(s)
- Ksenia Polonsky
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Pupko
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Natalia T Freund
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Obtaining Highly Active Catalytic Antibodies Capable of Enzymatically Cleaving Antigens. Int J Mol Sci 2022; 23:ijms232214351. [PMID: 36430828 PMCID: PMC9697424 DOI: 10.3390/ijms232214351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
A catalytic antibody has multiple functions compared with a monoclonal antibody because it possesses unique features to digest antigens enzymatically. Therefore, many catalytic antibodies, including their subunits, have been produced since 1989. The catalytic activities often depend on the preparation methods and conditions. In order to elicit the high catalytic activity of the antibodies, the most preferable methods and conditions, which can be generally applicable, must be explored. Based on this view, systematic experiments using two catalytic antibody light chains, #7TR and H34, were performed by varying the purification methods, pH, and chemical reagents. The experimental results obtained by peptidase activity tests and kinetic analysis, revealed that the light chain's high catalytic activity was observed when it was prepared under a basic condition. These data imply that a small structural modulation of the catalytic antibody occurs during the purification process to increase the catalytic activity while the antigen recognition ability is kept constant. The presence of NaCl enhanced the catalytic activity. When the catalytic light chain was prepared with these preferable conditions, #7TR and H34 hugely enhanced the degradation ability of Amyloid-beta and PD-1 peptide, respectively.
Collapse
|
3
|
Hifumi E, Taguchi H, Nonaka T, Harada T, Uda T. Finding and characterizing a catalytic antibody light chain, H34, capable of degrading the PD-1 molecule. RSC Chem Biol 2021; 2:220-229. [PMID: 34458785 PMCID: PMC8341958 DOI: 10.1039/d0cb00155d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/11/2020] [Indexed: 11/25/2022] Open
Abstract
Programmed cell death 1 (PD-1) is an immune checkpoint molecule regulating T-cell function. Preventing PD-1 binding to its ligand PD-L1 has emerged as an important tool in immunotherapy. Here, we describe a unique human catalytic antibody light chain, H34, which mediates enzymatic degradation of human PD-1 peptides and recombinant human PD-1 protein and thus functions to prevent the binding of PD-1 with PD-L1. H34 degraded one half of the PD-1 molecules within about 6 h under the experimental conditions. Investigating the acquisition of the catalytic function by H34, which belongs to subgroup I and lacks a Pro95 residue in CDR-3, revealed the importance of this sequence, as a Pro95-reconstituted mutant (H34-Pro95(+)) exhibited very little catalytic activity to cleave PD-1. Interestingly, EDTA inhibited the catalytic activity of H34, which could work as a metallo-protease. Zn2+ or Co2+ ions may work as a cofactor. It is meaningfull that H34 was obtained from the human antibody gene taken from a healthy volunteer, suggesting that we potentially have such unique molecules in our body.
Collapse
Affiliation(s)
- Emi Hifumi
- Oita University, Research Promotion Institute 700 Dannoharu Oita-shi Oita 870-1192 Japan
| | - Hiroaki Taguchi
- Suzuka University of Medical Science, Faculty of Pharmaceutical Sciences 3500-3 Minamitamagaki-cho Suzuka 510-0293 Japan
| | - Tamami Nonaka
- Oita University, Research Promotion Institute 700 Dannoharu Oita-shi Oita 870-1192 Japan
| | - Takunori Harada
- Oita University, Faculty of Science & Technology, Division of Applied Chemistry 700 Dannoharu Oita-shi Oita 870-1192 Japan
| | - Taizo Uda
- Nanotechnology Laboratory, Institute of Systems, Information Technologies and Nanotechnologies (ISIT) 4-1 Kyudai-shinmachi Fukuoka 879-5593 Japan
| |
Collapse
|
4
|
Ling WL, Lua WH, Gan SKE. Sagacity in antibody humanization for therapeutics, diagnostics and research purposes: considerations of antibody elements and their roles. Antib Ther 2020; 3:71-79. [PMID: 33928226 PMCID: PMC7990220 DOI: 10.1093/abt/tbaa005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/27/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
The humanization of antibodies for therapeutics is a critical process that can determine the success of antibody drug development. However, the science underpinning this process remains elusive with different laboratories having very different methods. Well-funded laboratories can afford automated high-throughput screening methods to derive their best binder utilizing a very expensive initial set of equipment affordable only to a few. Often within these high-throughput processes, only standard key parameters, such as production, binding and aggregation are analyzed. Given the lack of suitable animal models, it is only at clinical trials that immunogenicity and allergy adverse effects are detected through anti-human antibodies as per FDA guidelines. While some occurrences that slip through can be mitigated by additional desensitization protocols, such adverse reactions to grafted humanized antibodies can be prevented at the humanization step. Considerations such as better antibody localization, avoidance of unspecific interactions to superantigens and the tailoring of antibody dependent triggering of immune responses, the antibody persistence on cells, can all be preemptively considered through a holistic sagacious approach, allowing for better outcomes in therapy and for research and diagnostic purposes.
Collapse
Affiliation(s)
- Wei-Li Ling
- Antibody & Product Development Lab, Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Wai-Heng Lua
- Antibody & Product Development Lab, Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
- p53 Laboratory, ASTAR, 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore 138648
- Experimental Drug Development Center, ASTAR, 10 Biopolis Road, #05-01, Chromos, Singapore 138670
| |
Collapse
|
5
|
Choi J, Kim M, Lee J, Seo Y, Ham Y, Lee J, Lee J, Kim JK, Kwon MH. Antigen-binding affinity and thermostability of chimeric mouse-chicken IgY and mouse-human IgG antibodies with identical variable domains. Sci Rep 2019; 9:19242. [PMID: 31848417 PMCID: PMC6917740 DOI: 10.1038/s41598-019-55805-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/18/2019] [Indexed: 01/01/2023] Open
Abstract
Constant (C)-region switching of heavy (H) and/or light (L) chains in antibodies (Abs) can affect their affinity and specificity, as demonstrated using mouse, human, and chimeric mouse-human (MH) Abs. However, the consequences of C-region switching between evolutionarily distinct mammalian and avian Abs remain unknown. To explore C-region switching in mouse-chicken (MC) Abs, we investigated antigen-binding parameters and thermal stability of chimeric MC-6C407 and MC-3D8 IgY Abs compared with parental mouse IgGs and chimeric MH Abs (MH-6C407 IgG and MH-3D8 IgG) bearing identical corresponding variable (V) regions. The two MC-IgYs exhibited differences in antigen-binding parameters and thermal stability from their parental mouse Abs. However, changes were similar to or less than those between chimeric MH Abs and their parental mouse Abs. The results demonstrate that mammalian and avian Abs share compatible V-C region interfaces, which may be conducive for the design and utilization of mammalian-avian chimeric Abs.
Collapse
Affiliation(s)
- Juho Choi
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Minjae Kim
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Joungmin Lee
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Youngsil Seo
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Yeonkyoung Ham
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Jihyun Lee
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Jeonghyun Lee
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Jin-Kyoo Kim
- Department of Microbiology, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, 51140, South Korea
| | - Myung-Hee Kwon
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea. .,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.
| |
Collapse
|
6
|
Cornwell O, Bond NJ, Radford SE, Ashcroft AE. Long-Range Conformational Changes in Monoclonal Antibodies Revealed Using FPOP-LC-MS/MS. Anal Chem 2019; 91:15163-15170. [DOI: 10.1021/acs.analchem.9b03958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Owen Cornwell
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, U.K
| | - Nicholas J. Bond
- Analytical Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Granta Park, Cambridge, CB21 6GH, U.K
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, U.K
| | - Alison E. Ashcroft
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, U.K
| |
Collapse
|
7
|
Lua WH, Ling WL, Yeo JY, Poh JJ, Lane DP, Gan SKE. The effects of Antibody Engineering CH and CL in Trastuzumab and Pertuzumab recombinant models: Impact on antibody production and antigen-binding. Sci Rep 2018; 8:718. [PMID: 29335579 PMCID: PMC5768722 DOI: 10.1038/s41598-017-18892-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022] Open
Abstract
Current therapeutic antibodies such as Trastuzumab, are typically of the blood circulatory IgG1 class (Cκ/ CHγ1). Due to the binding to Her2 also present on normal cell surfaces, side effects such as cardiac failure can sometimes be associated with such targeted therapy. Using antibody isotype swapping, it may be possible to reduce systemic circulation through increased tissue localization, thereby minimising unwanted side effects. However, the effects of such modifications have yet to be fully characterized, particularly with regards to their biophysical properties in antigen binding. To do this, we produced all light and heavy chain human isotypes/subtypes recombinant versions of Trastuzumab and Pertuzumab, and studied them with respect to recombinant production and Her2 binding. Our findings show that while the light chain constant region changes have no major effects on production or Her2 binding, some heavy chain isotypes, in particularly, IgM and IgD isotypes, can modulate antigen binding. This study thus provides the groundwork for such isotype modifications to be performed in the future to yield therapeutics of higher efficacy and efficiency.
Collapse
Affiliation(s)
- Wai-Heng Lua
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wei-Li Ling
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joshua Yi Yeo
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jun-Jie Poh
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - David Philip Lane
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Samuel Ken-En Gan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,p53 Laboratory, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
8
|
Mokrushina YA, Pipiya SO, Stepanova AV, Shamborant OG, Knorre VD, Smirnov IV, Gabibov AG, Vorobiev II. Peculiarities of the Mechanism of Interactions of Catalytic Antibodies with Organophosphorus Substrates. Mol Biol 2017. [DOI: 10.1134/s0026893317060127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Yang D, Kroe-Barrett R, Singh S, Roberts CJ, Laue TM. IgG cooperativity - Is there allostery? Implications for antibody functions and therapeutic antibody development. MAbs 2017; 9:1231-1252. [PMID: 28812955 PMCID: PMC5680800 DOI: 10.1080/19420862.2017.1367074] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A central dogma in immunology is that an antibody's in vivo functionality is mediated by 2 independent events: antigen binding by the variable (V) region, followed by effector activation by the constant (C) region. However, this view has recently been challenged by reports suggesting allostery exists between the 2 regions, triggered by conformational changes or configurational differences. The possibility of allosteric signals propagating through the IgG domains complicates our understanding of the antibody structure-function relationship, and challenges the current subclass selection process in therapeutic antibody design. Here we review the types of cooperativity in IgG molecules by examining evidence for and against allosteric cooperativity in both Fab and Fc domains and the characteristics of associative cooperativity in effector system activation. We investigate the origin and the mechanism of allostery with an emphasis on the C-region-mediated effects on both V and C region interactions, and discuss its implications in biological functions. While available research does not support the existence of antigen-induced conformational allosteric cooperativity in IgGs, there is substantial evidence for configurational allostery due to glycosylation and sequence variations.
Collapse
Affiliation(s)
- Danlin Yang
- a Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc. , Ridgefield , Connecticut , USA
| | - Rachel Kroe-Barrett
- a Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc. , Ridgefield , Connecticut , USA
| | - Sanjaya Singh
- b Janssen BioTherapeutics, Janssen Research & Development, LLC, Spring House , Pennsylvania , USA
| | - Christopher J Roberts
- c Department of Chemical and Biomolecular Engineering , University of Delaware , Newark , Delaware , USA
| | - Thomas M Laue
- d Department of Molecular, Cellular, and Biomedical Sciences , University of New Hampshire , Durham , New Hampshire , USA
| |
Collapse
|
10
|
Bobik TV, Shurdova EM, Smirnov IV, Ponomarenko NA, Khurs EN, Knorre VD, Gabibov AG. Genetic Engineering of Native Chain Combinations of B-Cell Repertoires on the Surface of Methylotrophic Yeasts Pichia pastoris. Bull Exp Biol Med 2017; 163:263-267. [PMID: 28726211 DOI: 10.1007/s10517-017-3780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Indexed: 11/24/2022]
Abstract
We designed genetic constructs for exposing Fab-fragment library of natively paired single cell B-cell receptors on the surface of Pichia pastoris yeast cells. We have previously obtained the A17 antibody in our laboratory [6]. In this study we showed that the newly designed genetic constructs provide a compatible level of A17 antibody Fab fragment on the surface of yeast cells as well as in the case of vectors containing DNA fragments corresponding to each chain of the antibody. The data suggest that the developed approach for constructing immunoglobulin gene libraries is adequate and fully convenient for studying properties of the real human B-lymphocyte repertoire.
Collapse
Affiliation(s)
- T V Bobik
- Laboratory of Biocatalysis, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - E M Shurdova
- Laboratory of Biocatalysis, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - I V Smirnov
- Laboratory of Biocatalysis, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - N A Ponomarenko
- Laboratory of Biocatalysis, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - E N Khurs
- Laboratory of Chemical Bases and Biocatalysis V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - V D Knorre
- Laboratory of Biocatalysis, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A G Gabibov
- Laboratory of Biocatalysis, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
11
|
Kemmish H, Fasnacht M, Yan L. Fully automated antibody structure prediction using BIOVIA tools: Validation study. PLoS One 2017; 12:e0177923. [PMID: 28542300 PMCID: PMC5436848 DOI: 10.1371/journal.pone.0177923] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 05/05/2017] [Indexed: 12/03/2022] Open
Abstract
We describe the methodology and results from our validation study of the fully automated antibody structure prediction tool available in the BIOVIA (formerly Accelrys) protein modeling suite. Extending our previous study, we have validated the automated approach using a larger and more diverse data set (157 unique antibody Fv domains versus 11 in the previous study). In the current study, we explore the effect of varying several parameter settings in order to better understand their influence on the resulting model quality. Specifically, we investigated the dependence on different methods of framework model construction, antibody numbering schemes (Chothia, IMGT, Honegger and Kabat), the influence of compatibility of loop templates using canonical type filtering, wider exploration of model solution space, and others. Our results show that our recently introduced Top5 framework modeling method results in a small but significant improvement in model quality whereas the effect of other parameters is not significant. Our analysis provides improved guidelines of best practices for using our protocol to build antibody structures. We also identify some limitations of the current computational model which will enhance proper evaluation of model quality by users and suggests possible future enhancements.
Collapse
Affiliation(s)
- Helen Kemmish
- Dassault Systèmes Biovia Corp., San Diego, California, United States of America
| | - Marc Fasnacht
- Dassault Systèmes Biovia Corp., San Diego, California, United States of America
| | - Lisa Yan
- Dassault Systèmes Biovia Corp., San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Smirnov IV, Golovin AV, Chatziefthimiou SD, Stepanova AV, Peng Y, Zolotareva OI, Belogurov AA, Kurkova IN, Ponomarenko NA, Wilmanns M, Blackburn GM, Gabibov AG, Lerner RA. Robotic QM/MM-driven maturation of antibody combining sites. SCIENCE ADVANCES 2016; 2:e1501695. [PMID: 27774510 PMCID: PMC5072179 DOI: 10.1126/sciadv.1501695] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
In vitro selection of antibodies from large repertoires of immunoglobulin (Ig) combining sites using combinatorial libraries is a powerful tool, with great potential for generating in vivo scavengers for toxins. However, addition of a maturation function is necessary to enable these selected antibodies to more closely mimic the full mammalian immune response. We approached this goal using quantum mechanics/molecular mechanics (QM/MM) calculations to achieve maturation in silico. We preselected A17, an Ig template, from a naïve library for its ability to disarm a toxic pesticide related to organophosphorus nerve agents. Virtual screening of 167,538 robotically generated mutants identified an optimum single point mutation, which experimentally boosted wild-type Ig scavenger performance by 170-fold. We validated the QM/MM predictions via kinetic analysis and crystal structures of mutant apo-A17 and covalently modified Ig, thereby identifying the displacement of one water molecule by an arginine as delivering this catalysis.
Collapse
Affiliation(s)
- Ivan V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ulitsa Miklukho‐Maklaya 16/10, 117997 Moscow V-437, Russian Federation
| | - Andrey V. Golovin
- Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Spyros D. Chatziefthimiou
- European Molecular Biology Laboratory, Hamburg Unit, c/o German Synchrotron Research Center, Notkestrasse 85, 22603 Hamburg, Germany
| | - Anastasiya V. Stepanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ulitsa Miklukho‐Maklaya 16/10, 117997 Moscow V-437, Russian Federation
| | - Yingjie Peng
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road MB-10, La Jolla, CA 92037, USA
| | | | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ulitsa Miklukho‐Maklaya 16/10, 117997 Moscow V-437, Russian Federation
| | - Inna N. Kurkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ulitsa Miklukho‐Maklaya 16/10, 117997 Moscow V-437, Russian Federation
| | - Natalie A. Ponomarenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ulitsa Miklukho‐Maklaya 16/10, 117997 Moscow V-437, Russian Federation
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, c/o German Synchrotron Research Center, Notkestrasse 85, 22603 Hamburg, Germany
| | - G. Michael Blackburn
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ulitsa Miklukho‐Maklaya 16/10, 117997 Moscow V-437, Russian Federation
- Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Richard A. Lerner
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road MB-10, La Jolla, CA 92037, USA
| |
Collapse
|
13
|
Toughiri R, Wu X, Ruiz D, Huang F, Crissman JW, Dickey M, Froning K, Conner EM, Cujec TP, Demarest SJ. Comparing domain interactions within antibody Fabs with kappa and lambda light chains. MAbs 2016; 8:1276-1285. [PMID: 27454112 PMCID: PMC5058631 DOI: 10.1080/19420862.2016.1214785] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
IgG antibodies are multi-domain proteins with complex inter-domain interactions. Human IgG heavy chains (HCs) associate with light chains (LCs) of the κ or λ isotype to form mature antibodies capable of binding antigen. The HC/LC interaction involves 4 domains: VH and CH1 from the HC and VL and CL from the LC. Human Fabs with κ LCs have been well characterized for their unfolding behaviors and demonstrate a significant level of cooperativity and stabilization when all 4 domains are intact. Very little is known regarding the thermodynamic properties of human Fabs with λ LCs. Here, we dissect the domain contributions to Fab stability for both κ and λ LC-containing Fabs. We find the cooperativity of unfolding between the constant domains, CH1/Cλ, and variable domains, VH/Vλ, within λ LC-containing Fabs is significantly weaker than that of κ LC-containing Fabs. The data suggests there may not be an evolutionary necessity for strong variable/constant domain cooperativity within λ LC-containing Fabs. After investigating the biophysical properties of Fabs with mismatched variable and constant domain subunits (e.g., VH/Vκ paired with CH1/Cλ or T cell receptor Cα/Cβ), the major role of the constant domains for both κ- and λ-containing Fabs may be to reduce the hydrophobic exposure at the VH/VL interface. Even though Fabs with these non-native pairings were thermodynamically less stable, they secreted well from mammalian cells as well behaved monodisperse proteins, which was in contrast to what was observed with the VH/Vκ and VH/Vλ scFvs that secreted as a mixture of monomer and aggregates.
Collapse
Affiliation(s)
- Raheleh Toughiri
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Xiufeng Wu
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Diana Ruiz
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Flora Huang
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - John W Crissman
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Mark Dickey
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Karen Froning
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Elaine M Conner
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Thomas P Cujec
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Stephen J Demarest
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| |
Collapse
|
14
|
New Genetic Constructs for Generation of Stable Therapeutic Antibodies to Organophosphorus Toxins in Methylotrophic Yeasts Pichia Pastoris. Bull Exp Biol Med 2016; 161:83-7. [DOI: 10.1007/s10517-016-3351-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Indexed: 10/21/2022]
|
15
|
Hifumi E, Matsumoto S, Nakashima H, Itonaga S, Arakawa M, Katayama Y, Kato R, Uda T. A novel method of preparing the monoform structure of catalytic antibody light chain. FASEB J 2015; 30:895-908. [PMID: 26527062 DOI: 10.1096/fj.15-276394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/19/2015] [Indexed: 11/11/2022]
Abstract
Along with the development of antibody drugs and catalytic antibodies, the structural diversity (heterogeneity) of antibodies has been given attention. For >20 yr, detailed studies on the subject have not been conducted, because the phenomenon presents many difficult and complex problems. Structural diversity provides some (or many) isoforms of an antibody distinguished by different charges, different molecular sizes, and modifications of amino acid residues. For practical use, the antibody and the subunits must have a defined structure. In recent work, we have found that the copper (Cu) ion plays a substantial role in solving the diversity problem. In the current study, we used several catalytic antibody light chains to examine the effect of the Cu ion. In all cases, the different electrical charges of the molecule converged to a single charge, giving 1 peak in cation-exchange chromatography, as well as a single spot in 2-dimensional gel electrophoresis. The Cu-binding site was investigated by using mutagenesis, ultraviolet-visible spectroscopy, atomic force microscope analysis, and molecular modeling, which suggested that histidine and cysteine residues close to the C-terminus are involved with the binding site. The constant region domain of the antibody light chain played an important role in the heterogeneity of the light chain. Our findings may be a significant tool for preparing a single defined, not multiple, isoform structure.
Collapse
Affiliation(s)
- Emi Hifumi
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| | - Shingo Matsumoto
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| | - Hiroki Nakashima
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| | - Shogo Itonaga
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| | - Mitsue Arakawa
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| | - Yoshiki Katayama
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| | - Ryuichi Kato
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| | - Taizo Uda
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| |
Collapse
|
16
|
Molecular mechanisms of growth and progression of malignant neoplasms. Mol Biol 2015. [DOI: 10.1134/s0026893315050179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Deyev SM, Lebedenko EN, Petrovskaya LE, Dolgikh DA, Gabibov AG, Kirpichnikov MP. Man-made antibodies and immunoconjugates with desired properties: function optimization using structural engineering. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4459] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|