1
|
Helliwell JR. The crystal structures of the enzyme hydroxymethylbilane synthase, also known as porphobilinogen deaminase. Acta Crystallogr F Struct Biol Commun 2021; 77:388-398. [PMID: 34726177 PMCID: PMC8561815 DOI: 10.1107/s2053230x2100964x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/16/2021] [Indexed: 12/03/2022] Open
Abstract
The enzyme hydroxymethylbilane synthase (HMBS; EC 4.3.1.8), also known as porphobilinogen deaminase, catalyses the stepwise addition of four molecules of porphobilinogen to form the linear tetrapyrrole 1-hydroxymethylbilane. Thirty years of crystal structures are surveyed in this topical review. These crystal structures aim at the elucidation of the structural basis of the complex reaction mechanism involving the formation of tetrapyrrole from individual porphobilinogen units. The consistency between the various structures is assessed. This includes an evaluation of the precision of each molecular model and what was not modelled. A survey is also made of the crystallization conditions used in the context of the operational pH of the enzyme. The combination of 3D structural techniques, seeking accuracy, has also been a feature of this research effort. Thus, SAXS, NMR and computational molecular dynamics have also been applied. The general framework is also a considerable chemistry research effort to understand the function of the enzyme and its medical pathologies in acute intermittent porphyria (AIP). Mutational studies and their impact on the catalytic reaction provide insight into the basis of AIP and are also invaluable for guiding the understanding of the crystal structure results. Future directions for research on HMBS are described, including the need to determine the protonation states of key amino-acid residues identified as being catalytically important. The question remains - what is the molecular engine for this complex reaction? Thermal fluctuations are the only suggestion thus far.
Collapse
Affiliation(s)
- John R. Helliwell
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
2
|
Hemkemeyer M, Schwalb SA, Heinze S, Joergensen RG, Wichern F. Functions of elements in soil microorganisms. Microbiol Res 2021; 252:126832. [PMID: 34508963 DOI: 10.1016/j.micres.2021.126832] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
The soil microbial community fulfils various functions, such as nutrient cycling and carbon (C) sequestration, therefore contributing to maintenance of soil fertility and mitigation of global warming. In this context, a major focus of research has been on C, nitrogen (N) and phosphorus (P) cycling. However, from aquatic and other environments, it is well known that other elements beyond C, N, and P are essential for microbial functioning. Nonetheless, for soil microorganisms this knowledge has not yet been synthesised. To gain a better mechanistic understanding of microbial processes in soil systems, we aimed at summarising the current knowledge on the function of a range of essential or beneficial elements, which may affect the efficiency of microbial processes in soil. This knowledge is discussed in the context of microbial driven nutrient and C cycling. Our findings may support future investigations and data evaluation, where other elements than C, N, and P affect microbial processes.
Collapse
Affiliation(s)
- Michael Hemkemeyer
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany.
| | - Sanja A Schwalb
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| | - Stefanie Heinze
- Department of Soil Science & Soil Ecology, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Rainer Georg Joergensen
- Department of Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Florian Wichern
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| |
Collapse
|
3
|
Bustad HJ, Kallio JP, Laitaoja M, Toska K, Kursula I, Martinez A, Jänis J. Characterization of porphobilinogen deaminase mutants reveals that arginine-173 is crucial for polypyrrole elongation mechanism. iScience 2021; 24:102152. [PMID: 33665570 PMCID: PMC7907807 DOI: 10.1016/j.isci.2021.102152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/03/2020] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
Porphobilinogen deaminase (PBGD), the third enzyme in the heme biosynthesis, catalyzes the sequential coupling of four porphobilinogen (PBG) molecules into a heme precursor. Mutations in PBGD are associated with acute intermittent porphyria (AIP), a rare metabolic disorder. We used Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to demonstrate that wild-type PBGD and AIP-associated mutant R167W both existed as holoenzymes (Eholo) covalently attached to the dipyrromethane cofactor, and three intermediate complexes, ES, ES2, and ES3, where S represents PBG. In contrast, only ES2 was detected in AIP-associated mutant R173W, indicating that the formation of ES3 is inhibited. The R173W crystal structure in the ES2-state revealed major rearrangements of the loops around the active site, compared to wild-type PBGD in the Eholo-state. These results contribute to elucidating the structural pathogenesis of two common AIP-associated mutations and reveal the important structural role of Arg173 in the polypyrrole elongation mechanism.
Collapse
Affiliation(s)
- Helene J Bustad
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Juha P Kallio
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Mikko Laitaoja
- Department of Chemistry, University of Eastern Finland, 80130 Joensuu, Finland
| | - Karen Toska
- Norwegian Porphyria Centre (NAPOS), Department for Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90570 Oulu, Finland
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, 80130 Joensuu, Finland
| |
Collapse
|
4
|
Sato H, Sugishima M, Tsukaguchi M, Masuko T, Iijima M, Takano M, Omata Y, Hirabayashi K, Wada K, Hisaeda Y, Yamamoto K. Crystal structures of hydroxymethylbilane synthase complexed with a substrate analog: a single substrate-binding site for four consecutive condensation steps. Biochem J 2021; 478:1023-1042. [PMID: 33600566 PMCID: PMC7959689 DOI: 10.1042/bcj20200996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 11/30/2022]
Abstract
Hydroxymethylbilane synthase (HMBS), which is involved in the heme biosynthesis pathway, has a dipyrromethane cofactor and combines four porphobilinogen (PBG) molecules to form a linear tetrapyrrole, hydroxymethylbilane. Enzyme kinetic study of human HMBS using a PBG-derivative, 2-iodoporphobilinogen (2-I-PBG), exhibited noncompetitive inhibition with the inhibition constant being 5.4 ± 0.3 µM. To elucidate the reaction mechanism of HMBS in detail, crystal structure analysis of 2-I-PBG-bound holo-HMBS and its reaction intermediate possessing two PBG molecules (ES2), and inhibitor-free ES2 was performed at 2.40, 2.31, and 1.79 Å resolution, respectively. Their overall structures are similar to that of inhibitor-free holo-HMBS, and the differences are limited near the active site. In both 2-I-PBG-bound structures, 2-I-PBG is located near the terminus of the cofactor or the tetrapyrrole chain. The propionate group of 2-I-PBG interacts with the side chain of Arg173, and its acetate group is associated with the side chains of Arg26 and Ser28. Furthermore, the aminomethyl group and pyrrole nitrogen of 2-I-PBG form hydrogen bonds with the side chains of Gln34 and Asp99, respectively. These amino acid residues form a single substrate-binding site, where each of the four PBG molecules covalently binds to the cofactor (or oligopyrrole chain) consecutively, ultimately forming a hexapyrrole chain. Molecular dynamics simulation of the ES2 intermediate suggested that the thermal fluctuation of the lid and cofactor-binding loops causes substrate recruitment and oligopyrrole chain shift needed for consecutive condensation. Finally, the hexapyrrole chain is hydrolyzed self-catalytically to produce hydroxymethylbilane.
Collapse
Affiliation(s)
- Hideaki Sato
- Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Mai Tsukaguchi
- Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Takahiro Masuko
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mikuru Iijima
- Department of Pure and Applied Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Mitsunori Takano
- Department of Pure and Applied Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Yoshiaki Omata
- Department of Molecular Biology, Faculty of Pharmaceutical Science, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| | - Kei Hirabayashi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| |
Collapse
|
5
|
Bustad HJ, Kallio JP, Vorland M, Fiorentino V, Sandberg S, Schmitt C, Aarsand AK, Martinez A. Acute Intermittent Porphyria: An Overview of Therapy Developments and Future Perspectives Focusing on Stabilisation of HMBS and Proteostasis Regulators. Int J Mol Sci 2021; 22:E675. [PMID: 33445488 PMCID: PMC7827610 DOI: 10.3390/ijms22020675] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Acute intermittent porphyria (AIP) is an autosomal dominant inherited disease with low clinical penetrance, caused by mutations in the hydroxymethylbilane synthase (HMBS) gene, which encodes the third enzyme in the haem biosynthesis pathway. In susceptible HMBS mutation carriers, triggering factors such as hormonal changes and commonly used drugs induce an overproduction and accumulation of toxic haem precursors in the liver. Clinically, this presents as acute attacks characterised by severe abdominal pain and a wide array of neurological and psychiatric symptoms, and, in the long-term setting, the development of primary liver cancer, hypertension and kidney failure. Treatment options are few, and therapies preventing the development of symptomatic disease and long-term complications are non-existent. Here, we provide an overview of the disorder and treatments already in use in clinical practice, in addition to other therapies under development or in the pipeline. We also introduce the pathomechanistic effects of HMBS mutations, and present and discuss emerging therapeutic options based on HMBS stabilisation and the regulation of proteostasis. These are novel mechanistic therapeutic approaches with the potential of prophylactic correction of the disease by totally or partially recovering the enzyme functionality. The present scenario appears promising for upcoming patient-tailored interventions in AIP.
Collapse
Affiliation(s)
- Helene J. Bustad
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; (H.J.B.); (J.P.K.)
| | - Juha P. Kallio
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; (H.J.B.); (J.P.K.)
| | - Marta Vorland
- Norwegian Porphyria Centre (NAPOS), Department for Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; (M.V.); (S.S.)
| | - Valeria Fiorentino
- INSERM U1149, Center for Research on Inflammation (CRI), Université de Paris, 75018 Paris, France; (V.F.); (C.S.)
| | - Sverre Sandberg
- Norwegian Porphyria Centre (NAPOS), Department for Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; (M.V.); (S.S.)
- Norwegian Organization for Quality Improvement of Laboratory Examinations (Noklus), Haraldsplass Deaconess Hospital, 5009 Bergen, Norway
| | - Caroline Schmitt
- INSERM U1149, Center for Research on Inflammation (CRI), Université de Paris, 75018 Paris, France; (V.F.); (C.S.)
- Assistance Publique Hôpitaux de Paris (AP-HP), Centre Français des Porphyries, Hôpital Louis Mourier, 92700 Colombes, France
| | - Aasne K. Aarsand
- Norwegian Porphyria Centre (NAPOS), Department for Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; (M.V.); (S.S.)
- Norwegian Organization for Quality Improvement of Laboratory Examinations (Noklus), Haraldsplass Deaconess Hospital, 5009 Bergen, Norway
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; (H.J.B.); (J.P.K.)
| |
Collapse
|
6
|
Bung N, Roy A, Priyakumar UD, Bulusu G. Computational modeling of the catalytic mechanism of hydroxymethylbilane synthase. Phys Chem Chem Phys 2019; 21:7932-7940. [DOI: 10.1039/c9cp00196d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydroxymethylbilane synthase (HMBS), the third enzyme in the heme biosynthesis pathway, catalyzes the formation of 1-hydroxymethylbilane (HMB) by a stepwise polymerization of four molecules of porphobilinogen (PBG) using the dipyrromethane (DPM) cofactor.
Collapse
Affiliation(s)
- Navneet Bung
- TCS Innovation Labs – Hyderabad (Life Sciences Division)
- Tata Consultancy Services Limited
- Hyderabad 500081
- India
- Center for Computational Natural Sciences and Bioinformatics
| | - Arijit Roy
- TCS Innovation Labs – Hyderabad (Life Sciences Division)
- Tata Consultancy Services Limited
- Hyderabad 500081
- India
| | - U. Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics
- International Institute of Information Technology
- Hyderabad 500032
- India
| | - Gopalakrishnan Bulusu
- TCS Innovation Labs – Hyderabad (Life Sciences Division)
- Tata Consultancy Services Limited
- Hyderabad 500081
- India
- Center for Computational Natural Sciences and Bioinformatics
| |
Collapse
|
7
|
Pluta P, Roversi P, Bernardo-Seisdedos G, Rojas AL, Cooper JB, Gu S, Pickersgill RW, Millet O. Structural basis of pyrrole polymerization in human porphobilinogen deaminase. Biochim Biophys Acta Gen Subj 2018; 1862:1948-1955. [PMID: 29908816 DOI: 10.1016/j.bbagen.2018.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/17/2018] [Accepted: 06/13/2018] [Indexed: 01/27/2023]
Abstract
Human porphobilinogen deaminase (PBGD), the third enzyme in the heme pathway, catalyzes four times a single reaction to convert porphobilinogen into hydroxymethylbilane. Remarkably, PBGD employs a single active site during the process, with a distinct yet chemically equivalent bond formed each time. The four intermediate complexes of the enzyme have been biochemically validated and they can be isolated but they have never been structurally characterized other than the apo- and holo-enzyme bound to the cofactor. We present crystal structures for two human PBGD intermediates: PBGD loaded with the cofactor and with the reaction intermediate containing two additional substrate pyrrole rings. These results, combined with SAXS and NMR experiments, allow us to propose a mechanism for the reaction progression that requires less structural rearrangements than previously suggested: the enzyme slides a flexible loop over the growing-product active site cavity. The structures and the mechanism proposed for this essential reaction explain how a set of missense mutations result in acute intermittent porphyria.
Collapse
Affiliation(s)
- Paula Pluta
- Protein Stability and Inherited Disease Laboratory, CIC bioGUNE, Derio, Bizkaia 48160, Spain
| | - Pietro Roversi
- Oxford Glycobiology Institute, Dept. of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7RH, England, UK
| | | | - Adriana L Rojas
- Structural Biology Unit, CIC bioGUNE, Derio, Bizkaia 48160, Spain
| | - Jonathan B Cooper
- Department of Biological Sciences, Birkbeck, London WC1E 7HX, UK; Division of Medicine, University College London, London WC1E 6BT, UK
| | - Shuang Gu
- School of Biological and Chemical Sciences, Chemistry & Biochemistry Department, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Richard W Pickersgill
- School of Biological and Chemical Sciences, Chemistry & Biochemistry Department, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Oscar Millet
- Protein Stability and Inherited Disease Laboratory, CIC bioGUNE, Derio, Bizkaia 48160, Spain.
| |
Collapse
|
8
|
Bung N, Roy A, Chen B, Das D, Pradhan M, Yasuda M, New MI, Desnick RJ, Bulusu G. Human hydroxymethylbilane synthase: Molecular dynamics of the pyrrole chain elongation identifies step-specific residues that cause AIP. Proc Natl Acad Sci U S A 2018; 115:E4071-E4080. [PMID: 29632172 PMCID: PMC5924904 DOI: 10.1073/pnas.1719267115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydroxymethylbilane synthase (HMBS), the third enzyme in the heme biosynthetic pathway, catalyzes the head-to-tail condensation of four molecules of porphobilinogen (PBG) to form the linear tetrapyrrole 1-hydroxymethylbilane (HMB). Mutations in human HMBS (hHMBS) cause acute intermittent porphyria (AIP), an autosomal-dominant disorder characterized by life-threatening neurovisceral attacks. Although the 3D structure of hHMBS has been reported, the mechanism of the stepwise polymerization of four PBG molecules to form HMB remains unknown. Moreover, the specific roles of each of the critical active-site residues in the stepwise enzymatic mechanism and the dynamic behavior of hHMBS during catalysis have not been investigated. Here, we report atomistic studies of HMB stepwise synthesis by using molecular dynamics (MD) simulations, mutagenesis, and in vitro expression analyses. These studies revealed that the hHMBS active-site loop movement and cofactor turn created space for the elongating pyrrole chain. Twenty-seven residues around the active site and water molecules interacted to stabilize the large, negatively charged, elongating polypyrrole. Mutagenesis of these active-site residues altered the binding site, hindered cofactor binding, decreased catalysis, impaired ligand exit, and/or destabilized the enzyme. Based on intermediate stages of chain elongation, R26 and R167 were the strongest candidates for proton transfer to deaminate the incoming PBG molecules. Unbiased random acceleration MD simulations identified R167 as a gatekeeper and facilitator of HMB egress through the space between the enzyme's domains and the active-site loop. These studies identified the specific active-site residues involved in each step of pyrrole elongation, thereby providing the molecular bases of the active-site mutations causing AIP.
Collapse
Affiliation(s)
- Navneet Bung
- Life Sciences Division, TCS Innovation Labs-Hyderabad, Tata Consultancy Services Limited, Hyderabad 500081, India
| | - Arijit Roy
- Life Sciences Division, TCS Innovation Labs-Hyderabad, Tata Consultancy Services Limited, Hyderabad 500081, India
| | - Brenden Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Dibyajyoti Das
- Life Sciences Division, TCS Innovation Labs-Hyderabad, Tata Consultancy Services Limited, Hyderabad 500081, India
| | - Meenakshi Pradhan
- Life Sciences Division, TCS Innovation Labs-Hyderabad, Tata Consultancy Services Limited, Hyderabad 500081, India
| | - Makiko Yasuda
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Maria I New
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Gopalakrishnan Bulusu
- Life Sciences Division, TCS Innovation Labs-Hyderabad, Tata Consultancy Services Limited, Hyderabad 500081, India;
| |
Collapse
|
9
|
Guo J, Erskine P, Coker AR, Wood SP, Cooper JB. Structural studies of domain movement in active-site mutants of porphobilinogen deaminase from Bacillus megaterium. Acta Crystallogr F Struct Biol Commun 2017; 73:612-620. [PMID: 29095155 PMCID: PMC5683031 DOI: 10.1107/s2053230x17015436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/23/2017] [Indexed: 11/10/2022] Open
Abstract
The enzyme porphobilinogen deaminase (PBGD) is one of the key enzymes in tetrapyrrole biosynthesis. It catalyses the formation of a linear tetrapyrrole from four molecules of the substrate porphobilinogen (PBG). It has a dipyrromethane cofactor (DPM) in the active site which is covalently linked to a conserved cysteine residue through a thioether bridge. The substrate molecules are linked to the cofactor in a stepwise head-to-tail manner during the reaction, which is catalysed by a conserved aspartate residue: Asp82 in the B. megaterium enzyme. Three mutations have been made affecting Asp82 (D82A, D82E and D82N) and their crystal structures have been determined at resolutions of 2.7, 1.8 and 1.9 Å, respectively. These structures reveal that whilst the D82E mutant possesses the DPM cofactor, in the D82N and D82A mutants the cofactor is likely to be missing, incompletely assembled or disordered. Comparison of the mutant PBGD structures with that of the wild-type enzyme shows that there are significant domain movements and suggests that the enzyme adopts `open' and `closed' conformations, potentially in response to substrate binding.
Collapse
Affiliation(s)
- Jingxu Guo
- Division of Medicine, University College London, Gower Street, London WC1E 6BT, England
| | - Peter Erskine
- Division of Medicine, University College London, Gower Street, London WC1E 6BT, England
- Department of Biological Sciences, Birkbeck, University of London, Malet Street, Bloomsbury, London WC1E 7HX, England
| | - Alun R. Coker
- Division of Medicine, University College London, Gower Street, London WC1E 6BT, England
| | - Steve P. Wood
- Division of Medicine, University College London, Gower Street, London WC1E 6BT, England
| | - Jonathan B. Cooper
- Division of Medicine, University College London, Gower Street, London WC1E 6BT, England
- Department of Biological Sciences, Birkbeck, University of London, Malet Street, Bloomsbury, London WC1E 7HX, England
| |
Collapse
|
10
|
Dailey HA, Dailey TA, Gerdes S, Jahn D, Jahn M, O'Brian MR, Warren MJ. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product. Microbiol Mol Biol Rev 2017; 81:e00048-16. [PMID: 28123057 PMCID: PMC5312243 DOI: 10.1128/mmbr.00048-16] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The advent of heme during evolution allowed organisms possessing this compound to safely and efficiently carry out a variety of chemical reactions that otherwise were difficult or impossible. While it was long assumed that a single heme biosynthetic pathway existed in nature, over the past decade, it has become clear that there are three distinct pathways among prokaryotes, although all three pathways utilize a common initial core of three enzymes to produce the intermediate uroporphyrinogen III. The most ancient pathway and the only one found in the Archaea converts siroheme to protoheme via an oxygen-independent four-enzyme-step process. Bacteria utilize the initial core pathway but then add one additional common step to produce coproporphyrinogen III. Following this step, Gram-positive organisms oxidize coproporphyrinogen III to coproporphyrin III, insert iron to make coproheme, and finally decarboxylate coproheme to protoheme, whereas Gram-negative bacteria first decarboxylate coproporphyrinogen III to protoporphyrinogen IX and then oxidize this to protoporphyrin IX prior to metal insertion to make protoheme. In order to adapt to oxygen-deficient conditions, two steps in the bacterial pathways have multiple forms to accommodate oxidative reactions in an anaerobic environment. The regulation of these pathways reflects the diversity of bacterial metabolism. This diversity, along with the late recognition that three pathways exist, has significantly slowed advances in this field such that no single organism's heme synthesis pathway regulation is currently completely characterized.
Collapse
Affiliation(s)
- Harry A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, and Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Tamara A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, and Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Svetlana Gerdes
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois, USA
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universitaet Braunschweig, Braunschweig, Germany
| | - Martina Jahn
- Institute of Microbiology, Technische Universitaet Braunschweig, Braunschweig, Germany
| | - Mark R O'Brian
- Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Martin J Warren
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| |
Collapse
|
11
|
Fortgens P, Pienaar E, Corrigall A, Sonderup M, Spearman CW, Meissner P. Molecular characterisation of acute intermittent porphyria in a cohort of South African patients and kinetic analysis of two expressed mutants. J Clin Pathol 2016; 70:515-520. [PMID: 27849156 DOI: 10.1136/jclinpath-2016-203907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 11/04/2022]
Abstract
AIMS Acute intermittent porphyria (AIP) is a disorder of the haem biosynthetic pathway caused by mutations in the hydroxymethylbilane synthase (HMBS) gene. Knowledge of the spectrum of mutations present in South Africa is limited. This study presents the molecular profile of 20 South African patients with AIP, and the kinetic analysis of one novel expressed mutated HMBS enzyme and a previously identified mutation at the same position. METHODS Genomic DNA was isolated from affected probands and selected family members, the HMBS gene amplified and mutations characterised by direct sequencing and restriction enzyme analysis. One of the novel mutations (p.Lys98Glu), a previously characterised mutation at the same position (p.Lys98Arg), and the wild-type enzyme were expressed, purified and subjected to partial kinetic characterisation. RESULTS Four new mutations, p.Lys98Glu, p.Asp230Aspfs*20, c.161-1G>A and c.422+3_6delAAGT, are described. Seven previously described mutations were found, while four patients revealed no mutations. Mutation analysis of five offspring of one of the probands carrying the p.Trp283X mutation revealed two asymptomatic carriers. Kinetic analysis showed that the p.Lys98Glu mutation results in loss of substrate affinity, whereas the previously described p.Lys98Arg mutation causes the loss of binding between the enzyme and its dipyrromethane cofactor, rendering the enzyme inactive. CONCLUSIONS This study comprises the most comprehensive characterisation of HMBS gene mutations in patients with AIP in South Africa. The biochemical characterisation of expressed HMBS mutants reveals insight into the mechanism of catalytic activity loss, which may inspire investigation into individualised therapy based on the molecular lesion identified.
Collapse
Affiliation(s)
- Philip Fortgens
- Division of Chemical Pathology, Department of Pathology, Groote Schuur Hospital, University of Cape Town, Observatory, South Africa
| | - Elaine Pienaar
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Lennox Eales Porphyria Laboratory, University of Cape Town, Observatory, South Africa
| | - Anne Corrigall
- Lennox Eales Porphyria Laboratory, University of Cape Town, Observatory, South Africa
| | - Mark Sonderup
- Division of Hepatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Observatory, South Africa
| | - C Wendy Spearman
- Division of Hepatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Observatory, South Africa
| | - Peter Meissner
- Department of Integrative Biomedical Sciences, Lennox Eales Porphyria Laboratory, Structural Biology Research Unit, University of Cape Town, Observatory, South Africa
| |
Collapse
|