1
|
Kuo BJ, Lin SC, Tu YF, Huang PH, Lo YC. Study of individual domains contributing to MALT1 dimerization in BCL10-independent and dependent assembly. Biochem Biophys Res Commun 2024; 717:150029. [PMID: 38714015 DOI: 10.1016/j.bbrc.2024.150029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
The CARMA-BCL10-MALT1 (CBM) signalosome functions as a pivotal supramolecular module, integrating diverse receptor-induced signaling pathways to regulate BCL10-dependent NF-kB activation in innate and adaptive immunity. Conversely, the API2-MALT1 fusion protein in t(11; 18)(q21; q21) MALT lymphoma constitutively induces BCL10-independent NF-kB activation. MALT1 dimer formation is indispensable for the requisite proteolytic activity and is critical for NF-kB activation regulation in both scenarios. However, the molecular assembly of MALT1 individual domains in CBM activation remains elusive. Here we report the crystal structure of the MALT1 death domain (DD) at a resolution of 2.1 Å, incorporating reconstructed residues in previously disordered loops 1 and 2. Additionally, we observe a conformational regulation element (CRE) regulating stem-helix formation in NLRPs pyrin (PYD) within the MALT1 DD structure. The structure reveals a stem-helix-mediated dimer further corroborated in solution. To elucidate how the BCL10 filament facilitates MALT1 dimerization, we reconstitute a BCL10-CARD-MALT1-DD-IG1-IG2 complex model. We propose a N+7 rule for BCL10-dependent MALT1 dimerization via the IG1-IG2 domain and for MALT1-dependent cleavage in trans. Biochemical data further indicates concentration-dependent dimerization of the MALT1 IG1-IG2 domain, facilitating MALT1 dimerization in BCL10-independent manner. Our findings provide a structural and biochemical foundation for understanding MALT1 dimeric mechanisms, shedding light on potential BCL10-independent MALT1 dimer formation and high-order BCL10-MALT1 assembly.
Collapse
Affiliation(s)
- Bai-Jiun Kuo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Su-Chang Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Fan Tu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Po-Hui Huang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yu-Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
2
|
Johri N, Matreja PS, Agarwal S, Nagar P, Kumar D, Maurya A. Unraveling the Molecular Mechanisms of Activated Protein C (APC) in Mitigating Reperfusion Injury and Cardiac Ischemia: a Promising Avenue for Novel Therapeutic Interventions. J Cardiovasc Transl Res 2024; 17:345-355. [PMID: 37851312 DOI: 10.1007/s12265-023-10445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Ischemic heart disease, which results from plaque formation in the coronary arteries, hinders the flow of oxygenated blood to the heart, leading to ischemia. Reperfusion injury remains a significant challenge for researchers, and the mechanisms underlying myocardial ischemia-reperfusion injury (MIRI) are not entirely understood. The review directs future research into potential targets in clinical treatment based on our present understanding of the pathophysiological mechanisms of MIRI. The study provides insights into the mechanisms underlying MIRI and offers direction for future research in this area. The use of targeted therapies may hold promise in improving cardiac function in the elderly and minimizing the adverse effects of revascularization therapies. The purpose of this review is to analyze the role of activated protein C (APC) in the pathogenesis of ischemic heart disease, heart failure, and myocardial ischemia-reperfusion injury, and discuss the potential of APC-based therapeutics.
Collapse
Affiliation(s)
- Nishant Johri
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India.
- School of Health & Psychological Sciences, City, University of London, London, United Kingdom.
| | - Prithpal S Matreja
- Department of Pharmacology, Teerthanker Mahaveer Medical College and Research Centre, Moradabad, Uttar Pradesh, India
| | - Shalabh Agarwal
- Department of Cardiology, Teerthanker Mahaveer Hospital & Research Centre, Moradabad, Uttar Pradesh, India
| | - Priya Nagar
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Deepanshu Kumar
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Aditya Maurya
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| |
Collapse
|
3
|
Zhang W, Zhang R, Wu L, Zhu C, Zhang C, Xu C, Zhao S, Liu X, Guo T, Lu Y, Gao Z, Yu X, Li L, Chen ZJ, Qin Y, Jiao X. NLRP14 deficiency causes female infertility with oocyte maturation defects and early embryonic arrest by impairing cytoplasmic UHRF1 abundance. Cell Rep 2023; 42:113531. [PMID: 38060382 DOI: 10.1016/j.celrep.2023.113531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/20/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Oocyte maturation is vital to attain full competence required for fertilization and embryogenesis. NLRP14 is preferentially expressed in mammalian oocytes and early embryos. Yet, the role and molecular mechanism of NLRP14 in oocyte maturation and early embryogenesis are poorly understood, and whether NLRP14 deficiency accounts for human infertility is unknown. Here, we found that maternal loss of Nlrp14 resulted in sterility with oocyte maturation defects and early embryonic arrest (EEA). Nlrp14 ablation compromised oocyte competence due to impaired cytoplasmic and nuclear maturation. Importantly, we revealed that NLRP14 maintained cytoplasmic UHRF1 abundance by protecting it from proteasome-dependent degradation and anchoring it from nuclear translocation in the oocyte. Furthermore, we identified compound heterozygous NLRP14 variants in women affected by infertility with EEA, which interrupted the NLRP14-UHRF1 interaction and decreased UHRF1 levels. Our data demonstrate NLRP14 as a cytoplasm-specific regulator of UHRF1 during oocyte maturation, providing insights into genetic diagnosis for female infertility.
Collapse
Affiliation(s)
- Wenzhe Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Rongrong Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Ling Wu
- The Department of Assisted Reproduction, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chendi Zhu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Chuanxin Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Chengpeng Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shidou Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Xinchen Liu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Ting Guo
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Yueshuang Lu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Zheng Gao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.
| | - Xue Jiao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
4
|
Hochheiser IV, Behrmann H, Hagelueken G, Rodríguez-Alcázar JF, Kopp A, Latz E, Behrmann E, Geyer M. Directionality of PYD filament growth determined by the transition of NLRP3 nucleation seeds to ASC elongation. SCIENCE ADVANCES 2022; 8:eabn7583. [PMID: 35559676 PMCID: PMC9106292 DOI: 10.1126/sciadv.abn7583] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/30/2022] [Indexed: 05/03/2023]
Abstract
Inflammasomes sense intrinsic and extrinsic danger signals to trigger inflammatory responses and pyroptotic cell death. Homotypic pyrin domain (PYD) interactions of inflammasome forming nucleotide-binding oligomerization domain (NOD)-like receptors with the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) mediate oligomerization into filamentous assemblies. We describe the cryo-electron microscopy (cryo-EM) structure of the human NLRP3PYD filament and identify a pattern of highly polar interface residues that form the homomeric interactions leading to characteristic filament ends designated as A- and B-ends. Coupling a titration polymerization assay to cryo-EM, we demonstrate that ASC adaptor protein elongation on NLRP3PYD nucleation seeds is unidirectional, associating exclusively to the B-end of the filament. Notably, NLRP3 and ASC PYD filaments exhibit the same symmetry in rotation and axial rise per subunit, allowing a continuous transition between NLRP3 and ASC. Integrating the directionality of filament growth, we present a molecular model of the ASC speck consisting of active NLRP3, ASC, and Caspase-1 proteins.
Collapse
Affiliation(s)
- Inga V. Hochheiser
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Heide Behrmann
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Gregor Hagelueken
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | | | - Anja Kopp
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 12 Parkville, VIC 3052, Australia
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Elmar Behrmann
- Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674 Cologne, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
5
|
Isazadeh M, Amandadi M, Haghdoust F, Lotfollazadeh S, Orzáez M, Hosseinkhani S. Split-luciferase complementary assay of NLRP3 PYD-PYD interaction indicates inflammasome formation during inflammation. Anal Biochem 2022; 638:114510. [PMID: 34863712 DOI: 10.1016/j.ab.2021.114510] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023]
Abstract
The NLRP3 inflammasome is a key macromolecular complex of the innate immune system that activates the inflammatory signalling cascade in response to a wide range of stimuli. Structural studies have shown that the intracellular cytosolic receptor NLRP3 oligomerizes upon stimulation and serves as a scaffold to form the ASC filaments necessary for procaspase-1 activation. Despite the abundant structural evidences on NLRP3 inflammasome, the interactions of the NLRP3 Pyrin domain and its functional relevance are poorly understood. In this study, the split luciferase complementation assay is used as an alternative approach to investigate NLRP3PYD-NLRP3PYD interactions during inflammasome formation. Since the homotypic NLRP3 interaction is mainly based on electrostatic interactions, a phosphomimetic residue (S5) at the interface of the NLRP3PYDs interactions has been mutated to show a disruptive effect on luciferase activity. According to the results presented, the designed biosensor was able to monitor the NLRP3PYD-NLRP3PYD interaction in vitro. The current reporter assay not only provides a specific NLRP3PYD-NLRP3PYD assay to study the PYD-PYD interaction in vitro, but also provides a suitable system for screening chemicals and drugs to identify activators and inhibitors of NLRP3.
Collapse
Affiliation(s)
- Mohsen Isazadeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farnaz Haghdoust
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shima Lotfollazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mar Orzáez
- Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Askari A, Mokaberi P, Dareini M, Medalian M, Pejhan M, Erfani M, Asadzadeh-Lotfabad M, Saberi MR, Chamani J. Impact of linker histone in the formation of ambochlorin-calf thymus DNA complex: Multi-spectroscopic, stopped-flow, and molecular modeling approaches. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1568-1582. [PMID: 35317121 PMCID: PMC8917854 DOI: 10.22038/ijbms.2021.58829.13070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022]
Abstract
Objective(s): This study aimed to evaluate the role of the linker histone (H1) in the binding interaction between ambochlorin (Amb), and calf thymus DNA (ctDNA) as binary and ternary systems. Materials and Methods: The project was accomplished through the means of absorbance, fluorescence, stopped-flow circular dichroism spectroscopy, viscosity, thermal melting, and molecular modeling techniques. Results: Spectroscopic analysis revealed that although Amb was strongly bound to both ctDNA and ctDNA-H1, it showed a greater tendency to ctDNA in the presence of the linker histone. The obtained thermodynamic parameters revealed that both Amb-ctDNA and Amb-ctDNA-H1 interactions were spontaneous, endothermic, and entropy-favored, and hydrophobic interactions played the main role in the formation and stabilization of complexes. Analysis of the stopped-flow circular dichroism results revealed that the binding process of Amb-ctDNA and Amb-ctDNA-H1 required a time of more than 150 milliseconds to complete. Moreover, Amb-ctDNA complex formation was marginally decelerated in the presence of the linker histone. The docking results suggested that the presence of the linker histone may alter the binding sites of Amb from ctDNA minor grooves to major grooves. Conclusion: All quenching processes were governed by a dynamic mechanism. Additionally, Amb did not stabilize or induce considerable conformational changes in ctDNA and ctDNA-H1 complex upon binding. In silico molecular docking results confirmed that Amb was bound to the double-helical ctDNA and ctDNA-H1 via ctDNA grooves. In summary, some binding properties of the interactions between Amb and ctDNA change in the presence of the linker histone.
Collapse
Affiliation(s)
- Azam Askari
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Mokaberi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Maryam Dareini
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Morvarid Medalian
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mahtab Pejhan
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Maryam Erfani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Mohammad Reza Saberi
- Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
7
|
Marleaux M, Anand K, Latz E, Geyer M. Crystal structure of the human NLRP9 pyrin domain suggests a distinct mode of inflammasome assembly. FEBS Lett 2020; 594:2383-2395. [PMID: 32542665 DOI: 10.1002/1873-3468.13865] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/17/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
Abstract
Inflammasomes are cytosolic multimeric signaling complexes of the innate immune system that induce activation of caspases. The NOD-like receptor NLRP9 recruits the adaptor protein ASC to form an ASC-dependent inflammasome to limit rotaviral replication in intestinal epithelial cells, but only little is known about the molecular mechanisms regulating and driving its assembly. Here, we present the crystal structure of the human NLRP9 pyrin domain (PYD). We show that NLRP9PYD is not able to self-polymerize nor to nucleate ASC specks in HEK293T cells. A comparison with filament-forming PYDs revealed that NLRP9PYD adopts a conformation compatible with filament formation, but several charge inversions of interfacing residues might cause repulsive effects that prohibit self-oligomerization. These results propose that inflammasome assembly of NLRP9 might differ largely from what we know of other inflammasomes.
Collapse
Affiliation(s)
- Michael Marleaux
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Kanchan Anand
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Ha HJ, Park HH. Crystal structure of the human NLRP9 pyrin domain reveals a bent N-terminal loop that may regulate inflammasome assembly. FEBS Lett 2020; 594:2396-2405. [PMID: 32542766 DOI: 10.1002/1873-3468.13866] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
Members of the NLR family pyrin domain containing (NLRPs) are pattern recognition receptors that participate in innate immunity. They form inflammasomes, which are platforms for caspase-1 recruitment and activation. The NLRP pyrin domain (PYD) is critical for the assembly of inflammasomes due to its ability to mediate protein interactions. Despite intensive structural studies on inflammasomes with PYDs, the structure of the PYD of NLRP9-the least studied member of the family-remains unknown. Herein, we report the crystal structure of the human NLRP9 PYD at 2.1 Å resolution, which reveals a kinked N-terminal loop oriented toward the interior of the helical bundle. Based on our findings, we propose a regulatory role for the kinked N-terminal loop of NLRP9 PYD in inflammasome assembly.
Collapse
Affiliation(s)
- Hyun Ji Ha
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| |
Collapse
|
9
|
Assembly of platforms for signal transduction in the new era: dimerization, helical filament assembly, and beyond. Exp Mol Med 2020; 52:356-366. [PMID: 32139779 PMCID: PMC7156525 DOI: 10.1038/s12276-020-0391-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 01/31/2020] [Indexed: 11/08/2022] Open
Abstract
Supramolecular organizing center (SMOC)-mediated signal transduction is an emerging concept in the field of signal transduction that is ushering in a new era. The formation of location-specific, higher-order SMOCs is particularly important for cell death and innate immune signaling processes. Several protein interaction domains, including the death domain (DD) superfamily and the CIDE domain, are representative mediators of SMOC assembly in cell death and innate immune signaling pathways. DD superfamily- and CIDE domain-containing proteins form SMOCs that activate various caspases and provide signaling scaffold platforms. These assemblies can lead to signal transduction and amplification during signaling events. In this review, we summarize recent findings on the molecular basis of DD superfamily- and CIDE domain-mediated SMOC formation. Improved understanding of large molecular signaling complexes that form during innate (nonspecific) immune responses could help develop treatments for multiple diseases including cancer. Correct cell signaling requires precise protein interactions and binding, which are mediated by specific sites on the surface of the protein molecules involved. Innate immune responses and cell death mechanisms rely on such protein interactions, and defects can cause signaling abnormalities and trigger disease. Hyun Ho Park and co-workers at Chung-Ang University in Seoul, South Korea, reviewed recent insights into the presence of supramolecular organizing centers (SMOCs), localized complexes of signaling proteins that form during immune responses. The researchers highlight existing understanding of SMOC assembly processes. A better understanding of SMOCs will help to explain enzyme activation, signal amplification and cell signaling control mechanisms.
Collapse
|
10
|
Park HH. Domain swapping of death domain superfamily: Alternative strategy for dimerization. Int J Biol Macromol 2019; 138:565-572. [DOI: 10.1016/j.ijbiomac.2019.07.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 01/20/2023]
|
11
|
Animal NLRs continue to inform plant NLR structure and function. Arch Biochem Biophys 2019; 670:58-68. [PMID: 31071301 DOI: 10.1016/j.abb.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/10/2019] [Accepted: 05/01/2019] [Indexed: 12/22/2022]
Abstract
Plant NLRs share many of the structural hallmarks of their animal counterparts. At a functional level, the central nucleotide-binding pocket appears to have binding and hydrolysis activities, similar to that of animal NLRs. The TIR domains of plant NLRs have been shown to self-associate, and there is emerging evidence that full-length plant NLRs may do so as well. It is therefore tempting to speculate that plant NLRs may form higher-order complexes similar to those of the mammalian inflammasome. Here we review the available knowledge on structure-function relationships in plant NLRs, focusing on how the information available on animal NLRs informs the mechanism of plant NLR function, and highlight the evidence that innate immunity signalling pathways in multicellular organisms often require the formation of higher-order protein complexes.
Collapse
|
12
|
Kim CM, Ha HJ, Kwon S, Jeong JH, Lee SH, Kim YG, Lee CS, Lee JH, Park HH. Structural transformation-mediated dimerization of caspase recruitment domain revealed by the crystal structure of CARD-only protein in frog virus 3. J Struct Biol 2019; 205:189-195. [DOI: 10.1016/j.jsb.2018.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 10/27/2022]
|
13
|
Shen C, Pei J, Guo X, Zhou L, Li Q, Quan J. Structural basis for dimerization of the death effector domain of the F122A mutant of Caspase-8. Sci Rep 2018; 8:16723. [PMID: 30425291 PMCID: PMC6233201 DOI: 10.1038/s41598-018-35153-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/19/2018] [Indexed: 11/09/2022] Open
Abstract
Caspase-8 is an apoptotic protease that is activated by a proximity-induced dimerization mechanism within the death-inducing signaling complex (DISC). The death effector domain (DED) of caspase-8 is involved in protein-protein interactions and is essential for the activation. Here, we report two crystal structures of the dimeric DEDs of the F122A mutant of caspase-8, both of which illustrate a novel domain-swapped dimerization, while differ in the relative orientation of the two subunits and the solvent exposure of the conserved hydrophobic patch Phe122/Leu123. We demonstrate that mutations disrupting the dimerization of the DEDs abrogate the formation of cellular death effector filaments (DEFs) and the induced apoptosis by overexpressed DEDs. Furthermore, such dimerization-disrupting mutations also impair the activation of the full-length caspase-8 and the downstream apoptosis cascade. The structures provide new insights into understanding the mechanism underlying the activation of procaspase-8 within the DISC and DEFs.
Collapse
Affiliation(s)
- Chen Shen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jianwen Pei
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xiaomin Guo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Lu Zhou
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qinkai Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Junmin Quan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
14
|
Microarray and whole-exome sequencing analysis of familial Behçet's disease patients. Sci Rep 2016; 6:19456. [PMID: 26785681 PMCID: PMC4726226 DOI: 10.1038/srep19456] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/14/2015] [Indexed: 12/24/2022] Open
Abstract
Behçet’s disease (BD), a chronic systemic inflammatory disorder, is characterized by recurrent oral and genital mucous ulcers, uveitis, and skin lesions. We performed DNA microarray analysis of peripheral blood mononuclear cell (PBMC) mRNA from 41 Japanese BD patients and revealed elevated levels of interleukin (IL) 23 receptor (IL23R) mRNA in many BD patients. DNA sequencing around a SNV (Rs12119179) tightly linked to BD revealed an elevated frequency of the C genotype, consistent with a previous report that IL23R is a susceptibility locus for BD. Notably, four of these BD patients are members of familial BD; a whole-exome sequencing (WES) of these BD patients identified 19 novel single-nucleotide variations (SNVs) specific to these patients. They include heterozygous SNVs in the genes encoding IL-1 receptor-associated kinase 4 (IRAK4), nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 14 (NRP14) and melanoma antigen-encoding gene E2 (MAGEE2); IRAK4 harbors a missense mutation, whereas NRP14 and MAGEE2 harbor nonsense mutations. These SNVs may serve as genetic markers that characterize BD.
Collapse
|
15
|
Bryant CE, Orr S, Ferguson B, Symmons MF, Boyle JP, Monie TP. International Union of Basic and Clinical Pharmacology. XCVI. Pattern recognition receptors in health and disease. Pharmacol Rev 2015; 67:462-504. [PMID: 25829385 DOI: 10.1124/pr.114.009928] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since the discovery of Toll, in the fruit fly Drosophila melanogaster, as the first described pattern recognition receptor (PRR) in 1996, many families of these receptors have been discovered and characterized. PRRs play critically important roles in pathogen recognition to initiate innate immune responses that ultimately link to the generation of adaptive immunity. Activation of PRRs leads to the induction of immune and inflammatory genes, including proinflammatory cytokines and chemokines. It is increasingly clear that many PRRs are linked to a range of inflammatory, infectious, immune, and chronic degenerative diseases. Several drugs to modulate PRR activity are already in clinical trials and many more are likely to appear in the near future. Here, we review the different families of mammalian PRRs, the ligands they recognize, the mechanisms of activation, their role in disease, and the potential of targeting these proteins to develop the anti-inflammatory therapeutics of the future.
Collapse
Affiliation(s)
- Clare E Bryant
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Selinda Orr
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Brian Ferguson
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Martyn F Symmons
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Joseph P Boyle
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Tom P Monie
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| |
Collapse
|
16
|
Abstract
The PYRIN domain (PYD) is a protein-protein interaction domain, which belongs to the death domain fold (DDF) superfamily. It is best known for its signaling function in innate immune responses and particularly in the assembly of inflammasomes, which are large protein complexes that allow the induced proximity-mediated activation of caspase-1 and subsequently the release of pro-inflammatory cytokines. The molecular mechanism of inflammasome assembly was only recently elucidated and specifically requires PYD oligomerization. Here we discuss the recent advances in our understanding of PYD signaling and its regulation by PYD-only proteins.
Collapse
|
17
|
Jin T, Xiao TS. Activation and assembly of the inflammasomes through conserved protein domain families. Apoptosis 2015; 20:151-6. [PMID: 25398536 DOI: 10.1007/s10495-014-1053-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inflammasomes are oligomeric protein complexes assembled through interactions among the death domain superfamily members, in particular the CARD and PYD domains. Recent progress has shed lights on how the ASC PYD can polymerize to form filaments using multiple domain:domain interfaces, and how the caspase4 CARD can recognize LPS to activate the non-classical inflammasome pathway. Comprehensive understanding of the molecular mechanisms of inflammasome activation and assembly require more extensive structural and biophysical dissection of the inflammasome components and complexes, in particular additional CARD or PYD filaments. Because of the variations in death domain structures and complexes observed so far, future work will undoubtedly shed lights on the mechanisms of inflammasome assembly as well as more surprises on the versatile structure and function of the death domain superfamily.
Collapse
Affiliation(s)
- Tengchuan Jin
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
18
|
Huber RG, Eibl C, Fuchs JE. Intrinsic flexibility of NLRP pyrin domains is a key factor in their conformational dynamics, fold stability, and dimerization. Protein Sci 2014; 24:174-81. [PMID: 25403012 DOI: 10.1002/pro.2601] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/09/2014] [Indexed: 01/12/2023]
Abstract
Nucleotide-binding domain leucine-rich repeat-containing receptors (NLRs) are key proteins in the innate immune system. The 14 members of the NLRP family of NLRs contain an N-terminal pyrin domain which is central for complex formation and signal transduction. Recently, X-ray structures of NLRP14 revealed an unexpected rearrangement of the α5/6 stem-helix of the pyrin domain allowing a novel symmetric dimerization mode. We characterize the conformational transitions underlying NLRP oligomerization using molecular dynamics simulations. We describe conformational stability of native NLRP14 and mutants in their monomeric and dimeric states and compare them to NLRP4, a representative of a native pyrin domain fold. Thereby, we characterize the interplay of conformational dynamics, fold stability, and dimerization in NLRP pyrin domains. We show that intrinsic flexibility of NLRP pyrin domains is a key factor influencing their behavior in physiological conditions. Additionally, we provide further evidence for the crucial importance of a charge relay system within NLRPs that critically influences their conformational ensemble in solution.
Collapse
Affiliation(s)
- Roland G Huber
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain, 80/82, Innsbruck, Austria; Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01 Matrix, Singapore, 138671
| | | | | |
Collapse
|
19
|
Structural mechanisms in NLR inflammasome signaling. Curr Opin Struct Biol 2014; 29:17-25. [PMID: 25201319 DOI: 10.1016/j.sbi.2014.08.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/25/2014] [Accepted: 08/05/2014] [Indexed: 01/28/2023]
Abstract
Members of the NOD-like receptor (NLR) family mediate the innate immune response to a wide range of pathogens, tissue damage and other cellular stresses. They achieve modulation of these signals by forming oligomeric signaling platforms, which in analogy to the apoptosome are predicted to adopt a defined oligomeric architecture and will here be referred to as NLR oligomers. Once formed, oligomers of the NLR proteins NLRP3 or NLRC4 'recruit' the adaptor protein ASC and the effector caspase-1, whereby NLRC4 can also directly interact with caspase-1. This results in large multi-protein assemblies, termed inflammasomes. Ultimately, the formation of these inflammasomes leads to the activation of caspase-1, which then processes the cytokines IL-1β and IL-18 triggering the immune response. Here we review new insights into NLR structure and implications on NLR oligomer formation as well as the nature of multi-protein inflammasomes. Of note, so dubbed 'canonical inflammasomes' can also be triggered by the NLR NLRP1b and the non-NLR protein AIM2, however the most detailed mechanistic information at hand pertains to NLRC4 while NLRP3 represents the quintessential inflammasome trigger. Thus these two NLRs are mainly used as examples in this article.
Collapse
|