1
|
Chen G, Wang Y, Zheng Z, Jiang W, Leppert A, Zhong X, Belorusova A, Siegal G, Jegerschöld C, Koeck PJB, Abelein A, Hebert H, Knight SD, Johansson J. Molecular basis for different substrate-binding sites and chaperone functions of the BRICHOS domain. Protein Sci 2024; 33:e5063. [PMID: 38864729 PMCID: PMC11168071 DOI: 10.1002/pro.5063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Proteins can misfold into fibrillar or amorphous aggregates and molecular chaperones act as crucial guardians against these undesirable processes. The BRICHOS chaperone domain, found in several otherwise unrelated proproteins that contain amyloidogenic regions, effectively inhibits amyloid formation and toxicity but can in some cases also prevent non-fibrillar, amorphous protein aggregation. Here, we elucidate the molecular basis behind the multifaceted chaperone activities of the BRICHOS domain from the Bri2 proprotein. High-confidence AlphaFold2 and RoseTTAFold predictions suggest that the intramolecular amyloidogenic region (Bri23) is part of the hydrophobic core of the proprotein, where it occupies the proposed amyloid binding site, explaining the markedly reduced ability of the proprotein to prevent an exogenous amyloidogenic peptide from aggregating. However, the BRICHOS-Bri23 complex maintains its ability to form large polydisperse oligomers that prevent amorphous protein aggregation. A cryo-EM-derived model of the Bri2 BRICHOS oligomer is compatible with surface-exposed hydrophobic motifs that get exposed and come together during oligomerization, explaining its effects against amorphous aggregation. These findings provide a molecular basis for the BRICHOS chaperone domain function, where distinct surfaces are employed against different forms of protein aggregation.
Collapse
Affiliation(s)
- Gefei Chen
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Yu Wang
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- College of Wildlife and Protected Area, Northeast Forestry UniversityHarbinChina
| | - Zihan Zheng
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of PharmacologyXi'an Jiaotong UniversityXi'anChina
| | - Wangshu Jiang
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Axel Leppert
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Present address:
Department of Microbiology, Tumour and Cell BiologyKarolinska InstitutetSolnaSweden
| | - Xueying Zhong
- Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyHuddingeSweden
| | | | | | - Caroline Jegerschöld
- Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyHuddingeSweden
| | - Philip J. B. Koeck
- Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyHuddingeSweden
| | - Axel Abelein
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Hans Hebert
- Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyHuddingeSweden
| | - Stefan D. Knight
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Jan Johansson
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| |
Collapse
|
2
|
Sun Y, Li X, Chen R, Liu F, Wei S. Recent advances in structural characterization of biomacromolecules in foods via small-angle X-ray scattering. Front Nutr 2022; 9:1039762. [PMID: 36466419 PMCID: PMC9714470 DOI: 10.3389/fnut.2022.1039762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/03/2022] [Indexed: 08/04/2023] Open
Abstract
Small-angle X-ray scattering (SAXS) is a method for examining the solution structure, oligomeric state, conformational changes, and flexibility of biomacromolecules at a scale ranging from a few Angstroms to hundreds of nanometers. Wide time scales ranging from real time (milliseconds) to minutes can be also covered by SAXS. With many advantages, SAXS has been extensively used, it is widely used in the structural characterization of biomacromolecules in food science and technology. However, the application of SAXS in charactering the structure of food biomacromolecules has not been reviewed so far. In the current review, the principle, theoretical calculations and modeling programs are summarized, technical advances in the experimental setups and corresponding applications of in situ capabilities: combination of chromatography, time-resolved, temperature, pressure, flow-through are elaborated. Recent applications of SAXS for monitoring structural properties of biomacromolecules in food including protein, carbohydrate and lipid are also highlighted, and limitations and prospects for developing SAXS based on facility upgraded and artificial intelligence to study the structural properties of biomacromolecules are finally discussed. Future research should focus on extending machine time, simplifying SAXS data treatment, optimizing modeling methods in order to achieve an integrated structural biology based on SAXS as a practical tool for investigating the structure-function relationship of biomacromolecules in food industry.
Collapse
Affiliation(s)
- Yang Sun
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Xiujuan Li
- Pharmaceutical Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Ruixin Chen
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Fei Liu
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Song Wei
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| |
Collapse
|
3
|
SEC-SAXS: Experimental set-up and software developments build up a powerful tool. Methods Enzymol 2022; 677:221-249. [DOI: 10.1016/bs.mie.2022.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Konarev PV, Graewert MA, Jeffries CM, Fukuda M, Cheremnykh TA, Volkov VV, Svergun DI. EFAMIX, a tool to decompose inline chromatography SAXS data from partially overlapping components. Protein Sci 2021; 31:269-282. [PMID: 34767272 PMCID: PMC8740826 DOI: 10.1002/pro.4237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022]
Abstract
Small‐angle X‐ray scattering (SAXS) is an established technique for structural analysis of biological macromolecules in solution. During the last decade, inline chromatography setups coupling SAXS with size exclusion (SEC‐SAXS) or ion exchange (IEC‐SAXS) have become popular in the community. These setups allow one to separate individual components in the sample and to record SAXS data from isolated fractions, which is extremely important for subsequent data interpretation, analysis, and structural modeling. However, in case of partially overlapping elution peaks, inline chromatography SAXS may still yield scattering profiles from mixtures of components. The deconvolution of these scattering data into the individual fractions is nontrivial and potentially ambiguous. We describe a cross‐platform computer program, EFAMIX, for restoring the scattering and concentration profiles of the components based on the evolving factor analysis (EFA). The efficiency of the program is demonstrated in a number of simulated and experimental SEC‐SAXS data sets. Sensitivity and limitations of the method are explored, and its applicability to IEC‐SAXS data is discussed. EFAMIX requires minimal user intervention and is available to academic users through the program package ATSAS as from release 3.1.
Collapse
Affiliation(s)
- Petr V Konarev
- Laboratory of Reflectometry and Small-angle Scattering, A. V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russia
| | - Melissa A Graewert
- Hamburg Outstation, European Molecular Biology Laboratory, Hamburg, Germany
| | - Cy M Jeffries
- Hamburg Outstation, European Molecular Biology Laboratory, Hamburg, Germany
| | - Masakazu Fukuda
- Formulation Development Department, Chugai Pharmaceutical Co., Ltd., Tokyo, Japan
| | | | - Vladimir V Volkov
- Laboratory of Reflectometry and Small-angle Scattering, A. V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russia
| | - Dmitri I Svergun
- Hamburg Outstation, European Molecular Biology Laboratory, Hamburg, Germany
| |
Collapse
|
5
|
Dendooven T, Paris G, Shkumatov AV, Islam MS, Burt A, Kubańska MA, Yang TY, Hardwick SW, Luisi BF. Multi-scale ensemble properties of the Escherichia coli RNA degradosome. Mol Microbiol 2021; 117:102-120. [PMID: 34415624 PMCID: PMC7613265 DOI: 10.1111/mmi.14800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 11/30/2022]
Abstract
In organisms from all domains of life, multi-enzyme assemblies play central roles in defining transcript lifetimes and facilitating RNA-mediated regulation of gene expression. An assembly dedicated to such roles, known as the RNA degradosome, is found amongst bacteria from highly diverse lineages. About a fifth of the assembly mass of the degradosome of Escherichia coli and related species is predicted to be intrinsically disordered - a property that has been sustained for over a billion years of bacterial molecular history and stands in marked contrast to the high degree of sequence variation of that same region. Here, we characterize the conformational dynamics of the degradosome using a hybrid structural biology approach that combines solution scattering with ad hoc ensemble modelling, cryo-electron microscopy, and other biophysical methods. The E. coli degradosome can form punctate bodies in vivo that may facilitate its functional activities, and based on our results, we propose an electrostatic switch model to account for the propensity of the degradosome to undergo programmable puncta formation.
Collapse
Affiliation(s)
- Tom Dendooven
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Giulia Paris
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Alexander V Shkumatov
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Md Saiful Islam
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Alister Burt
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Marta A Kubańska
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tai Yuchen Yang
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Uchański T, Masiulis S, Fischer B, Kalichuk V, López-Sánchez U, Zarkadas E, Weckener M, Sente A, Ward P, Wohlkönig A, Zögg T, Remaut H, Naismith JH, Nury H, Vranken W, Aricescu AR, Pardon E, Steyaert J. Megabodies expand the nanobody toolkit for protein structure determination by single-particle cryo-EM. Nat Methods 2021; 18:60-68. [PMID: 33408403 PMCID: PMC7611088 DOI: 10.1038/s41592-020-01001-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/22/2020] [Indexed: 01/28/2023]
Abstract
Nanobodies are popular and versatile tools for structural biology. They have a compact single immunoglobulin domain organization, bind target proteins with high affinities while reducing their conformational heterogeneity and stabilize multi-protein complexes. Here we demonstrate that engineered nanobodies can also help overcome two major obstacles that limit the resolution of single-particle cryo-electron microscopy reconstructions: particle size and preferential orientation at the water-air interfaces. We have developed and characterized constructs, termed megabodies, by grafting nanobodies onto selected protein scaffolds to increase their molecular weight while retaining the full antigen-binding specificity and affinity. We show that the megabody design principles are applicable to different scaffold proteins and recognition domains of compatible geometries and are amenable for efficient selection from yeast display libraries. Moreover, we demonstrate that megabodies can be used to obtain three-dimensional reconstructions for membrane proteins that suffer from severe preferential orientation or are otherwise too small to allow accurate particle alignment.
Collapse
Affiliation(s)
- Tomasz Uchański
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Simonas Masiulis
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Baptiste Fischer
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Valentina Kalichuk
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Uriel López-Sánchez
- CNRS, Université Grenoble Alpes, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Eleftherios Zarkadas
- CNRS, Université Grenoble Alpes, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Miriam Weckener
- Rosalind Franklin Institute, Rutherford Appleton Laboratory, Didcot, UK
| | - Andrija Sente
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Philip Ward
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alexandre Wohlkönig
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Thomas Zögg
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - James H Naismith
- Rosalind Franklin Institute, Rutherford Appleton Laboratory, Didcot, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hugues Nury
- CNRS, Université Grenoble Alpes, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Wim Vranken
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
| | - A Radu Aricescu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium.
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.
| |
Collapse
|
7
|
Karki S, Shkumatov AV, Bae S, Kim H, Ko J, Kajander T. Structural basis of SALM3 dimerization and synaptic adhesion complex formation with PTPσ. Sci Rep 2020; 10:11557. [PMID: 32665594 PMCID: PMC7360590 DOI: 10.1038/s41598-020-68502-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/26/2020] [Indexed: 01/18/2023] Open
Abstract
Synaptic adhesion molecules play an important role in the formation, maintenance and refinement of neuronal connectivity. Recently, several leucine rich repeat (LRR) domain containing neuronal adhesion molecules have been characterized including netrin G-ligands, SLITRKs and the synaptic adhesion-like molecules (SALMs). Dysregulation of these adhesion molecules have been genetically and functionally linked to various neurological disorders. Here we investigated the molecular structure and mechanism of ligand interactions for the postsynaptic SALM3 adhesion protein with its presynaptic ligand, receptor protein tyrosine phosphatase σ (PTPσ). We solved the crystal structure of the dimerized LRR domain of SALM3, revealing the conserved structural features and mechanism of dimerization. Furthermore, we determined the complex structure of SALM3 with PTPσ using small angle X-ray scattering, revealing a 2:2 complex similar to that observed for SALM5. Solution studies unraveled additional flexibility for the complex structure, but validated the uniform mode of action for SALM3 and SALM5 to promote synapse formation. The relevance of the key interface residues was further confirmed by mutational analysis with cellular binding assays and artificial synapse formation assays. Collectively, our results suggest that SALM3 dimerization is a pre-requisite for the SALM3-PTPσ complex to exert synaptogenic activity.
Collapse
Affiliation(s)
- Sudeep Karki
- Institute of Biotechnology, University of Helsinki, Viikinkaari 1, PO Box 65, 00014, Helsinki, Finland
| | - Alexander V Shkumatov
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050, Brussels, Belgium.,VIB-VUB Center for Structural Biology, 1050, Brussels, Belgium
| | - Sungwon Bae
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Hyeonho Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Tommi Kajander
- Institute of Biotechnology, University of Helsinki, Viikinkaari 1, PO Box 65, 00014, Helsinki, Finland.
| |
Collapse
|
8
|
Structure and catalytic regulation of Plasmodium falciparum IMP specific nucleotidase. Nat Commun 2020; 11:3228. [PMID: 32591529 PMCID: PMC7320144 DOI: 10.1038/s41467-020-17013-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 05/28/2020] [Indexed: 11/21/2022] Open
Abstract
Plasmodium falciparum (Pf) relies solely on the salvage pathway for its purine nucleotide requirements, making this pathway indispensable to the parasite. Purine nucleotide levels are regulated by anabolic processes and by nucleotidases that hydrolyse these metabolites into nucleosides. Certain apicomplexan parasites, including Pf, have an IMP-specific-nucleotidase 1 (ISN1). Here we show, by comprehensive substrate screening, that PfISN1 catalyzes the dephosphorylation of inosine monophosphate (IMP) and is allosterically activated by ATP. Crystal structures of tetrameric PfISN1 reveal complex rearrangements of domain organization tightly associated with catalysis. Immunofluorescence microscopy and expression of GFP-fused protein indicate cytosolic localization of PfISN1 and expression in asexual and gametocyte stages of the parasite. With earlier evidence on isn1 upregulation in female gametocytes, the structures reported in this study may contribute to initiate the design for possible transmission-blocking agents. Plasmodium falciparum IMP-specific 5′-nucleotidase 1 (PfISN1) is of interest as a potential malaria drug target. Here, the authors report that IMP is a substrate, and ATP an allosteric activator, of PfISN1 and present PfISN1 crystal structures in the ligand-free state and bound to either IMP or ATP.
Collapse
|
9
|
Fan H, Walker AP, Carrique L, Keown JR, Serna Martin I, Karia D, Sharps J, Hengrung N, Pardon E, Steyaert J, Grimes JM, Fodor E. Structures of influenza A virus RNA polymerase offer insight into viral genome replication. Nature 2019; 573:287-290. [PMID: 31485076 PMCID: PMC6795553 DOI: 10.1038/s41586-019-1530-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/07/2019] [Indexed: 12/24/2022]
Abstract
Influenza A viruses are responsible for seasonal epidemics, and pandemics can arise from the transmission of novel zoonotic influenza A viruses to humans1,2. Influenza A viruses contain a segmented negative-sense RNA genome, which is transcribed and replicated by the viral-RNA-dependent RNA polymerase (FluPolA) composed of PB1, PB2 and PA subunits3-5. Although the high-resolution crystal structure of FluPolA of bat influenza A virus has previously been reported6, there are no complete structures available for human and avian FluPolA. Furthermore, the molecular mechanisms of genomic viral RNA (vRNA) replication-which proceeds through a complementary RNA (cRNA) replicative intermediate, and requires oligomerization of the polymerase7-10-remain largely unknown. Here, using crystallography and cryo-electron microscopy, we determine the structures of FluPolA from human influenza A/NT/60/1968 (H3N2) and avian influenza A/duck/Fujian/01/2002 (H5N1) viruses at a resolution of 3.0-4.3 Å, in the presence or absence of a cRNA or vRNA template. In solution, FluPolA forms dimers of heterotrimers through the C-terminal domain of the PA subunit, the thumb subdomain of PB1 and the N1 subdomain of PB2. The cryo-electron microscopy structure of monomeric FluPolA bound to the cRNA template reveals a binding site for the 3' cRNA at the dimer interface. We use a combination of cell-based and in vitro assays to show that the interface of the FluPolA dimer is required for vRNA synthesis during replication of the viral genome. We also show that a nanobody (a single-domain antibody) that interferes with FluPolA dimerization inhibits the synthesis of vRNA and, consequently, inhibits virus replication in infected cells. Our study provides high-resolution structures of medically relevant FluPolA, as well as insights into the replication mechanisms of the viral RNA genome. In addition, our work identifies sites in FluPolA that could be targeted in the development of antiviral drugs.
Collapse
Affiliation(s)
- Haitian Fan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Loïc Carrique
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jeremy R Keown
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Itziar Serna Martin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Dimple Karia
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jane Sharps
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Narin Hengrung
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Francis Crick Institute, London, UK
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jonathan M Grimes
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Diamond Light Source, Didcot, UK.
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Adamopoulos A, Heidebrecht T, Roosendaal J, Touw WG, Phan IQ, Beijnen J, Perrakis A. The domain architecture of the protozoan protein J-DNA-binding protein 1 suggests synergy between base J DNA binding and thymidine hydroxylase activity. J Biol Chem 2019; 294:12815-12825. [PMID: 31292194 DOI: 10.1074/jbc.ra119.007393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/04/2019] [Indexed: 11/06/2022] Open
Abstract
J-DNA-binding protein 1 (JBP1) contributes to the biosynthesis and maintenance of base J (β-d-glucosyl-hydroxymethyluracil), an epigenetic modification of thymidine (T) confined to pathogenic protozoa such as Trypanosoma and Leishmania JBP1 has two known functional domains: an N-terminal T hydroxylase (TH) homologous to the 5-methylcytosine hydroxylase domain in TET proteins and a J-DNA-binding domain (JDBD) that resides in the middle of JBP1. Here, we show that removing JDBD from JBP1 results in a soluble protein (Δ-JDBD) with the N- and C-terminal regions tightly associated together in a well-ordered structure. We found that this Δ-JDBD domain retains TH activity in vitro but displays a 15-fold lower apparent rate of hydroxylation compared with JBP1. Small-angle X-ray scattering (SAXS) experiments on JBP1 and JDBD in the presence or absence of J-DNA and on Δ-JDBD enabled us to generate low-resolution three-dimensional models. We conclude that Δ-JDBD, and not the N-terminal region of JBP1 alone, is a distinct folding unit. Our SAXS-based model supports the notion that binding of JDBD specifically to J-DNA can facilitate T hydroxylation 12-14 bp downstream on the complementary strand of the J-recognition site. We postulate that insertion of the JDBD module into the Δ-JDBD scaffold during evolution provided a mechanism that synergized J recognition and T hydroxylation, ensuring inheritance of base J in specific sequence patterns following DNA replication in kinetoplastid parasites.
Collapse
Affiliation(s)
- Athanassios Adamopoulos
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Tatjana Heidebrecht
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jeroen Roosendaal
- Department of Clinical Pharmacology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Wouter G Touw
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Isabelle Q Phan
- Seattle Structural Genomics Center for Infectious Disease, Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington 98109
| | - Jos Beijnen
- Department of Clinical Pharmacology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Anastassis Perrakis
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
11
|
Karki S, Paudel P, Sele C, Shkumatov AV, Kajander T. The structure of SALM5 suggests a dimeric assembly for the presynaptic RPTP ligand recognition. Protein Eng Des Sel 2019; 31:147-157. [PMID: 29897575 DOI: 10.1093/protein/gzy012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/15/2018] [Indexed: 12/28/2022] Open
Abstract
Synaptic adhesion molecules play a crucial role in the regulation of synapse development and maintenance. Recently, several families of leucine-rich repeat (LRR) domain-containing neuronal adhesion molecules have been characterised, including netrin-G ligands, LRRTMs and the synaptic adhesion-like molecule (SALM) family proteins. Most of these are expressed at the excitatory glutamatergic synapses, and dysfunctions of these genes are genetically linked with cognitive disorders, such as autism spectrum disorders and schizophrenia. The SALM family proteins SALM3 and SALM5, similar to SLITRKs, have been shown to bind to the presynaptic receptor protein tyrosine phosphatase (RPTP) family ligands. Here, we present the 3.1 Å crystal structure of the SALM5 LRR-Ig-domain construct and biophysical studies that verify the crystallographic results. We show that SALM1, SALM3 and SALM5 form similar dimeric structures, in which the LRR domains form the dimer interface. Both SALM3 and SALM5 bind to RPTP immunoglobulin domains with micromolar affinity. SALM3 shows a clear preference for the RPTP ligands with the meB splice insert. Our structural studies and sequence conservation analysis suggests a ligand-binding site and mechanism for RPTP binding via the dimeric LRR domain region.
Collapse
Affiliation(s)
- Sudeep Karki
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Prodeep Paudel
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Celeste Sele
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Alexander V Shkumatov
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium.,VIB-VUB Center for Structural Biology, Brussels 1050, Belgium
| | - Tommi Kajander
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
12
|
Structure and nucleotide-induced conformational dynamics of the Chlorobium tepidum Roco protein. Biochem J 2019; 476:51-66. [PMID: 30538153 DOI: 10.1042/bcj20180803] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022]
Abstract
The LRR (leucine-rich repeat)-Roc (Ras of complex proteins)-COR (C-terminal of Roc) domains are central to the action of nearly all Roco proteins, including the Parkinson's disease-associated protein LRRK2 (leucine-rich repeat kinase 2). We previously demonstrated that the Roco protein from Chlorobium tepidum (CtRoco) undergoes a dimer-monomer cycle during the GTPase reaction, with the protein being mainly dimeric in the nucleotide-free and GDP (guanosine-5'-diphosphate)-bound states and monomeric in the GTP (guanosine-5'-triphosphate)-bound state. Here, we report a crystal structure of CtRoco in the nucleotide-free state showing for the first time the arrangement of the LRR-Roc-COR. This structure reveals a compact dimeric arrangement and shows an unanticipated intimate interaction between the Roc GTPase domains in the dimer interface, involving residues from the P-loop, the switch II loop, the G4 region and a loop which we named the 'Roc dimerization loop'. Hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) is subsequently used to highlight structural alterations induced by individual steps along the GTPase cycle. The structure and HDX-MS data propose a pathway linking nucleotide binding to monomerization and relaying the conformational changes via the Roc switch II to the LRR and COR domains. Together, this work provides important new insights in the regulation of the Roco proteins.
Collapse
|
13
|
Franke D, Jeffries CM, Svergun DI. Machine Learning Methods for X-Ray Scattering Data Analysis from Biomacromolecular Solutions. Biophys J 2018; 114:2485-2492. [PMID: 29874600 PMCID: PMC6129182 DOI: 10.1016/j.bpj.2018.04.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 11/30/2022] Open
Abstract
Small-angle x-ray scattering (SAXS) of biological macromolecules in solutions is a widely employed method in structural biology. SAXS patterns include information about the overall shape and low-resolution structure of dissolved particles. Here, we describe how to transform experimental SAXS patterns to feature vectors and how a simple k-nearest neighbor approach is able to retrieve information on overall particle shape and maximal diameter (Dmax) as well as molecular mass directly from experimental scattering data. Based on this transformation, we develop a rapid multiclass shape-classification ranging from compact, extended, and flat categories to hollow and random-chain-like objects. This classification may be employed, e.g., as a decision block in automated data analysis pipelines. Further, we map protein structures from the Protein Data Bank into the classification space and, in a second step, use this mapping as a data source to obtain accurate estimates for the structural parameters (Dmax, molecular mass) of the macromolecule under study based on the experimental scattering pattern alone, without inverse Fourier transform for Dmax. All methods presented are implemented in a Fortran binary DATCLASS, part of the ATSAS data analysis suite, available on Linux, Mac, and Windows and free for academic use.
Collapse
Affiliation(s)
- Daniel Franke
- European Molecular Biology Laboratory, Hamburg, Germany.
| | - Cy M Jeffries
- European Molecular Biology Laboratory, Hamburg, Germany
| | | |
Collapse
|
14
|
Recent developments in small-angle X-ray scattering and hybrid method approaches for biomacromolecular solutions. Emerg Top Life Sci 2018; 2:69-79. [PMID: 33525782 DOI: 10.1042/etls20170138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 01/05/2023]
Abstract
Small-angle X-ray scattering (SAXS) has become a streamline method to characterize biological macromolecules, from small peptides to supramolecular complexes, in near-native solutions. Modern SAXS requires limited amounts of purified material, without the need for labelling, crystallization, or freezing. Dedicated beamlines at modern synchrotron sources yield high-quality data within or below several milliseconds of exposure time and are highly automated, allowing for rapid structural screening under different solutions and ambient conditions but also for time-resolved studies of biological processes. The advanced data analysis methods allow one to meaningfully interpret the scattering data from monodisperse systems, from transient complexes as well as flexible and heterogeneous systems in terms of structural models. Especially powerful are hybrid approaches utilizing SAXS with high-resolution structural techniques, but also with biochemical, biophysical, and computational methods. Here, we review the recent developments in the experimental SAXS practice and in analysis methods with a specific focus on the joint use of SAXS with complementary methods.
Collapse
|
15
|
Recent advances in the UltraScan SOlution MOdeller (US-SOMO) hydrodynamic and small-angle scattering data analysis and simulation suite. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:855-864. [PMID: 29594411 DOI: 10.1007/s00249-018-1296-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 01/10/2023]
Abstract
The UltraScan SOlution MOdeller (US-SOMO) is a comprehensive, public domain, open-source suite of computer programs centred on hydrodynamic modelling and small-angle scattering (SAS) data analysis and simulation. We describe here the advances that have been implemented since its last official release (#3087, 2017), which are available from release #3141 for Windows, Linux and Mac operating systems. A major effort has been the transition from the legacy Qt3 cross platform software development and user interface library to the modern Qt5 release. Apart from improved graphical support, this has allowed the direct implementation of the newest, almost two-orders of magnitude faster version of the ZENO hydrodynamic computation algorithm for all operating systems. Coupled with the SoMo-generated bead models with overlaps, ZENO provides the most accurate translational friction computations from atomic-level structures available (Rocco and Byron Eur Biophys J 44:417-431, 2015a), with computational times comparable with or faster than those of other methods. In addition, it has allowed us to introduce the direct representation of each atom in a structure as a (hydrated) bead, opening interesting new modelling possibilities. In the small-angle scattering (SAS) part of the suite, an indirect Fourier transform Bayesian algorithm has been implemented for the computation of the pairwise distance distribution function from SAS data. Finally, the SAS HPLC module, recently upgraded with improved baseline correction and Gaussian decomposition of not baseline-resolved peaks and with advanced statistical evaluation tools (Brookes et al. J Appl Cryst 49:1827-1841, 2016), now allows automatic top-peak frame selection and averaging.
Collapse
|
16
|
Bruce HA, Du D, Matak-Vinkovic D, Bandyra KJ, Broadhurst RW, Martin E, Sobott F, Shkumatov AV, Luisi BF. Analysis of the natively unstructured RNA/protein-recognition core in the Escherichia coli RNA degradosome and its interactions with regulatory RNA/Hfq complexes. Nucleic Acids Res 2018; 46:387-402. [PMID: 29136196 PMCID: PMC5758883 DOI: 10.1093/nar/gkx1083] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/16/2017] [Accepted: 10/22/2017] [Indexed: 12/20/2022] Open
Abstract
The RNA degradosome is a multi-enzyme assembly that plays a central role in the RNA metabolism of Escherichia coli and numerous other bacterial species including pathogens. At the core of the assembly is the endoribonuclease RNase E, one of the largest E. coli proteins and also one that bears the greatest region predicted to be natively unstructured. This extensive unstructured region, situated in the C-terminal half of RNase E, is punctuated with conserved short linear motifs that recruit partner proteins, direct RNA interactions, and enable association with the cytoplasmic membrane. We have structurally characterized a subassembly of the degradosome-comprising a 248-residue segment of the natively unstructured part of RNase E, the DEAD-box helicase RhlB and the glycolytic enzyme enolase, and provide evidence that it serves as a flexible recognition centre that can co-recruit small regulatory RNA and the RNA chaperone Hfq. Our results support a model in which the degradosome captures substrates and regulatory RNAs through the recognition centre, facilitates pairing to cognate transcripts and presents the target to the ribonuclease active sites of the greater assembly for cooperative degradation or processing.
Collapse
Affiliation(s)
- Heather A Bruce
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dijun Du
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dijana Matak-Vinkovic
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Katarzyna J Bandyra
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - R William Broadhurst
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Esther Martin
- Biomolecular & Analytical Mass Spectrometry group, Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry group, Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Alexander V Shkumatov
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
17
|
Deyaert E, Wauters L, Guaitoli G, Konijnenberg A, Leemans M, Terheyden S, Petrovic A, Gallardo R, Nederveen-Schippers LM, Athanasopoulos PS, Pots H, Van Haastert PJM, Sobott F, Gloeckner CJ, Efremov R, Kortholt A, Versées W. A homologue of the Parkinson's disease-associated protein LRRK2 undergoes a monomer-dimer transition during GTP turnover. Nat Commun 2017; 8:1008. [PMID: 29044096 PMCID: PMC5714945 DOI: 10.1038/s41467-017-01103-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 08/18/2017] [Indexed: 11/24/2022] Open
Abstract
Mutations in LRRK2 are a common cause of genetic Parkinson's disease (PD). LRRK2 is a multi-domain Roco protein, harbouring kinase and GTPase activity. In analogy with a bacterial homologue, LRRK2 was proposed to act as a GTPase activated by dimerization (GAD), while recent reports suggest LRRK2 to exist under a monomeric and dimeric form in vivo. It is however unknown how LRRK2 oligomerization is regulated. Here, we show that oligomerization of a homologous bacterial Roco protein depends on the nucleotide load. The protein is mainly dimeric in the nucleotide-free and GDP-bound states, while it forms monomers upon GTP binding, leading to a monomer-dimer cycle during GTP hydrolysis. An analogue of a PD-associated mutation stabilizes the dimer and decreases the GTPase activity. This work thus provides insights into the conformational cycle of Roco proteins and suggests a link between oligomerization and disease-associated mutations in LRRK2.
Collapse
Affiliation(s)
- Egon Deyaert
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Lina Wauters
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Department of Cell Biochemistry, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Giambattista Guaitoli
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
- Eberhard Karls University, Institute for Ophthalmic Research, Center for Ophthalmology, 72076, Tübingen, Germany
| | - Albert Konijnenberg
- Department of Chemistry, Biomolecular & Analytical Mass Spectrometry group, University of Antwerp, 2020, Antwerp, Belgium
| | - Margaux Leemans
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Susanne Terheyden
- Department of Cell Biochemistry, University of Groningen, Groningen, 9747 AG, The Netherlands
- Structural Biology Group, Max-Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - Arsen Petrovic
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - Rodrigo Gallardo
- VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PB 802, 3000, Leuven, Belgium
| | | | | | - Henderikus Pots
- Department of Cell Biochemistry, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Peter J M Van Haastert
- Department of Cell Biochemistry, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Frank Sobott
- Department of Chemistry, Biomolecular & Analytical Mass Spectrometry group, University of Antwerp, 2020, Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, Leeds, UK
- School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, Leeds, UK
| | - Christian Johannes Gloeckner
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
- Eberhard Karls University, Institute for Ophthalmic Research, Center for Ophthalmology, 72076, Tübingen, Germany
| | - Rouslan Efremov
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Wim Versées
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
18
|
Hopkins JB, Gillilan RE, Skou S. BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J Appl Crystallogr 2017; 50:1545-1553. [PMID: 29021737 PMCID: PMC5627684 DOI: 10.1107/s1600576717011438] [Citation(s) in RCA: 447] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/02/2017] [Indexed: 01/19/2023] Open
Abstract
BioXTAS RAW is a graphical-user-interface-based free open-source Python program for reduction and analysis of small-angle X-ray solution scattering (SAXS) data. The software is designed for biological SAXS data and enables creation and plotting of one-dimensional scattering profiles from two-dimensional detector images, standard data operations such as averaging and subtraction and analysis of radius of gyration and molecular weight, and advanced analysis such as calculation of inverse Fourier transforms and envelopes. It also allows easy processing of inline size-exclusion chromatography coupled SAXS data and data deconvolution using the evolving factor analysis method. It provides an alternative to closed-source programs such as Primus and ScÅtter for primary data analysis. Because it can calibrate, mask and integrate images it also provides an alternative to synchrotron beamline pipelines that scientists can install on their own computers and use both at home and at the beamline.
Collapse
|
19
|
Xue X, Wu J, Ricklin D, Forneris F, Di Crescenzio P, Schmidt CQ, Granneman J, Sharp TH, Lambris JD, Gros P. Regulator-dependent mechanisms of C3b processing by factor I allow differentiation of immune responses. Nat Struct Mol Biol 2017; 24:643-651. [PMID: 28671664 DOI: 10.1038/nsmb.3427] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/02/2017] [Indexed: 12/26/2022]
Abstract
The complement system labels microbes and host debris for clearance. Degradation of surface-bound C3b is pivotal to direct immune responses and protect host cells. How the serine protease factor I (FI), assisted by regulators, cleaves either two or three distant peptide bonds in the CUB domain of C3b remains unclear. We present a crystal structure of C3b in complex with FI and regulator factor H (FH; domains 1-4 with 19-20). FI binds C3b-FH between FH domains 2 and 3 and a reoriented C3b C-terminal domain and docks onto the first scissile bond, while stabilizing its catalytic domain for proteolytic activity. One cleavage in C3b does not affect its overall structure, whereas two cleavages unfold CUB and dislodge the thioester-containing domain (TED), affecting binding of regulators and thereby determining the number of cleavages. These data explain how FI generates late-stage opsonins iC3b or C3dg in a context-dependent manner, to react to foreign, danger or healthy self signals.
Collapse
Affiliation(s)
- Xiaoguang Xue
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Jin Wu
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Daniel Ricklin
- Department of Pathology &Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Federico Forneris
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Patrizia Di Crescenzio
- Department of Pathology &Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christoph Q Schmidt
- Department of Pathology &Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Joke Granneman
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Thomas H Sharp
- Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - John D Lambris
- Department of Pathology &Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Piet Gros
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
20
|
Franke D, Petoukhov MV, Konarev PV, Panjkovich A, Tuukkanen A, Mertens HDT, Kikhney AG, Hajizadeh NR, Franklin JM, Jeffries CM, Svergun DI. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J Appl Crystallogr 2017; 50:1212-1225. [PMID: 28808438 PMCID: PMC5541357 DOI: 10.1107/s1600576717007786] [Citation(s) in RCA: 1024] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022] Open
Abstract
Developments and improvements of the ATSAS software suite (versions 2.5–2.8) for analysis of small-angle scattering data of biological macromolecules or nanoparticles are described. ATSAS is a comprehensive software suite for the analysis of small-angle scattering data from dilute solutions of biological macromolecules or nanoparticles. It contains applications for primary data processing and assessment, ab initio bead modelling, and model validation, as well as methods for the analysis of flexibility and mixtures. In addition, approaches are supported that utilize information from X-ray crystallography, nuclear magnetic resonance spectroscopy or atomistic homology modelling to construct hybrid models based on the scattering data. This article summarizes the progress made during the 2.5–2.8 ATSAS release series and highlights the latest developments. These include AMBIMETER, an assessment of the reconstruction ambiguity of experimental data; DATCLASS, a multiclass shape classification based on experimental data; SASRES, for estimating the resolution of ab initio model reconstructions; CHROMIXS, a convenient interface to analyse in-line size exclusion chromatography data; SHANUM, to evaluate the useful angular range in measured data; SREFLEX, to refine available high-resolution models using normal mode analysis; SUPALM for a rapid superposition of low- and high-resolution models; and SASPy, the ATSAS plugin for interactive modelling in PyMOL. All these features and other improvements are included in the ATSAS release 2.8, freely available for academic users from https://www.embl-hamburg.de/biosaxs/software.html.
Collapse
Affiliation(s)
- D Franke
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
| | - M V Petoukhov
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany.,Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Leninsky prospect 59, 119333 Moscow, Russian Federation.,A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky prospect 31, 119071 Moscow, and N.N. Semenov Institute of Chemical Physics of Russian Academy of Sciences, Kosygina street 4, 119991 Moscow, Russian Federation
| | - P V Konarev
- Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Leninsky prospect 59, 119333 Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', ploshchad Kurchatova 1, 123182 Moscow, Russian Federation
| | - A Panjkovich
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
| | - A Tuukkanen
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
| | - H D T Mertens
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
| | - A G Kikhney
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
| | - N R Hajizadeh
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
| | - J M Franklin
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - C M Jeffries
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
| | - D I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
| |
Collapse
|
21
|
Tsirkone VG, Blokken J, De Wit F, Breemans J, De Houwer S, Debyser Z, Christ F, Strelkov SV. N-terminal half of transportin SR2 interacts with HIV integrase. J Biol Chem 2017; 292:9699-9710. [PMID: 28356354 PMCID: PMC5465493 DOI: 10.1074/jbc.m117.777029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/14/2017] [Indexed: 11/06/2022] Open
Abstract
The karyopherin transportin SR2 (TRN-SR2, TNPO3) is responsible for shuttling specific cargoes such as serine/arginine-rich splicing factors from the cytoplasm to the nucleus. This protein plays a key role in HIV infection by facilitating the nuclear import of the pre-integration complex (PIC) that contains the viral DNA as well as several cellular and HIV proteins, including the integrase. The process of nuclear import is considered to be the bottleneck of the viral replication cycle and therefore represents a promising target for anti-HIV drug design. Previous studies have demonstrated that the direct interaction between TRN-SR2 and HIV integrase predominantly involves the catalytic core domain (CCD) and the C-terminal domain (CTD) of the integrase. We aimed at providing a detailed molecular view of this interaction through a biochemical characterization of the respective protein complex. Size-exclusion chromatography was used to characterize the interaction of TRN-SR2 with a truncated variant of the HIV-1 integrase, including both the CCD and CTD. These experiments indicate that one TRN-SR2 molecule can specifically bind one CCD-CTD dimer. Next, the regions of the solenoid-like TRN-SR2 molecule that are involved in the interaction with integrase were identified using AlphaScreen binding assays, revealing that the integrase interacts with the N-terminal half of TRN-SR2 principally through the HEAT repeats 4, 10, and 11. Combining these results with small-angle X-ray scattering data for the complex of TRN-SR2 with truncated integrase, we propose a molecular model of the complex. We speculate that nuclear import of the PIC may proceed concurrently with the normal nuclear transport.
Collapse
Affiliation(s)
| | - Jolien Blokken
- the Laboratory for Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium
| | - Flore De Wit
- the Laboratory for Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium
| | | | - Stéphanie De Houwer
- the Laboratory for Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium
| | - Zeger Debyser
- the Laboratory for Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium
| | - Frauke Christ
- the Laboratory for Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium
| | | |
Collapse
|
22
|
Vandervelde A, Drobnak I, Hadži S, Sterckx YGJ, Welte T, De Greve H, Charlier D, Efremov R, Loris R, Lah J. Molecular mechanism governing ratio-dependent transcription regulation in the ccdAB operon. Nucleic Acids Res 2017; 45:2937-2950. [PMID: 28334797 PMCID: PMC5389731 DOI: 10.1093/nar/gkx108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/25/2017] [Accepted: 02/06/2017] [Indexed: 02/06/2023] Open
Abstract
Bacteria can become transiently tolerant to several classes of antibiotics. This phenomenon known as persistence is regulated by small genetic elements called toxin-antitoxin modules with intricate yet often poorly understood self-regulatory features. Here, we describe the structures of molecular complexes and interactions that drive the transcription regulation of the ccdAB toxin-antitoxin module. Low specificity and affinity of the antitoxin CcdA2 for individual binding sites on the operator are enhanced by the toxin CcdB2, which bridges the CcdA2 dimers. This results in a unique extended repressing complex that spirals around the operator and presents equally spaced DNA binding sites. The multivalency of binding sites induces a digital on-off switch for transcription, regulated by the toxin:antitoxin ratio. The ratio at which this switch occurs is modulated by non-specific interactions with the excess chromosomal DNA. Altogether, we present the molecular mechanisms underlying the ratio-dependent transcriptional regulation of the ccdAB operon.
Collapse
Affiliation(s)
- Alexandra Vandervelde
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium
| | - Igor Drobnak
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - San Hadži
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Yann G.-J. Sterckx
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Thomas Welte
- Dynamic Biosensors GmbH, Lochhamer Strasse 15, D-82152 Martinsried, Germany
| | - Henri De Greve
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Rouslan Efremov
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium
| | - Remy Loris
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium
| | - Jurij Lah
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Gkekas S, Singh RK, Shkumatov AV, Messens J, Fauvart M, Verstraeten N, Michiels J, Versées W. Structural and biochemical analysis of Escherichia coli ObgE, a central regulator of bacterial persistence. J Biol Chem 2017; 292:5871-5883. [PMID: 28223358 DOI: 10.1074/jbc.m116.761809] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/03/2017] [Indexed: 12/28/2022] Open
Abstract
The Obg protein family belongs to the TRAFAC (translation factor) class of P-loop GTPases and is conserved from bacteria to eukaryotes. Essential roles in many different cellular processes have been suggested for the Obg protein from Escherichia coli (ObgE), and we recently showed that it is a central regulator of bacterial persistence. Here, we report the first crystal structure of ObgE at 1.85-Å resolution in the GDP-bound state, showing the characteristic N-terminal domain and a central G domain that are common to all Obg proteins. ObgE also contains an intrinsically disordered C-terminal domain, and we show here that this domain specifically contributed to GTP binding, whereas it did not influence GDP binding or GTP hydrolysis. Biophysical analysis, using small angle X-ray scattering and multi-angle light scattering experiments, revealed that ObgE is a monomer in solution, regardless of the bound nucleotide. In contrast to recent suggestions, our biochemical analyses further indicate that ObgE is neither activated by K+ ions nor by homodimerization. However, the ObgE GTPase activity was stimulated upon binding to the ribosome, confirming the ribosome-dependent GTPase activity of the Obg family. Combined, our data represent an important step toward further unraveling the detailed molecular mechanism of ObgE, which might pave the way to further studies into how this GTPase regulates bacterial physiology, including persistence.
Collapse
Affiliation(s)
- Sotirios Gkekas
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Ranjan Kumar Singh
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Alexander V Shkumatov
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Joris Messens
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Maarten Fauvart
- the Centre of Microbial and Plant Genetics, KU Leuven, University of Leuven, 3001 Leuven, and.,the Department of Life Science Technologies, Smart Systems and Emerging Technologies Unit, IMEC, 3001 Leuven, Belgium
| | - Natalie Verstraeten
- the Centre of Microbial and Plant Genetics, KU Leuven, University of Leuven, 3001 Leuven, and
| | - Jan Michiels
- the Centre of Microbial and Plant Genetics, KU Leuven, University of Leuven, 3001 Leuven, and
| | - Wim Versées
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, .,the VIB-VUB Center for Structural Biology, 1050 Brussels
| |
Collapse
|
24
|
Pérez J, Vachette P. A Successful Combination: Coupling SE-HPLC with SAXS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1009:183-199. [PMID: 29218560 DOI: 10.1007/978-981-10-6038-0_11] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A monodispersed and ideal solution is a central (unique?) requirement of SAXS to allow one to extract structural information from the recorded pattern. On-line Size Exclusion Chromatography (SEC) marked a major breakthrough, separating particles present in solution according to their size. Identical frames under an elution peak can be averaged and further processed free from contamination. However, this is not always straightforward, separation is often incomplete and software have been developed to deconvolve the contributions from the different species (molecules or oligomeric forms) within the sample. In this chapter, we present the general workflow of a SEC-SAXS experiment. We present recent instrumental and data analysis improvements that have improved the quality of recorded data, extended its potential and turn it into a mainstream approach. We describe into some details two specific applications of SEC-SAXS that provide more than just separating associated forms from the particle of interest.
Collapse
Affiliation(s)
- Javier Pérez
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin BP48, 91192, Gif-sur-Yvette Cedex, France.
| | - Patrice Vachette
- Institut de Biologie Intégrative de la Cellule, UMR 9198, Université Paris-Sud, 91405, Orsay Cedex, France
| |
Collapse
|
25
|
Brookes E, Vachette P, Rocco M, Pérez J. US-SOMO HPLC-SAXS module: dealing with capillary fouling and extraction of pure component patterns from poorly resolved SEC-SAXS data. J Appl Crystallogr 2016; 49:1827-1841. [PMID: 27738419 PMCID: PMC5045733 DOI: 10.1107/s1600576716011201] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 07/10/2016] [Indexed: 11/23/2022] Open
Abstract
The US-SOMO HPLC-SAXS (high-performance liquid chromatography coupled with small-angle X-ray scattering) module is an advanced tool for the comprehensive analysis of SEC-SAXS (size-exclusion chromatography coupled with SAXS) data. It includes baseline and band-broadening correction routines, and Gaussian decomposition of overlapping skewed peaks into pure components. Size-exclusion chromatography coupled with SAXS (small-angle X-ray scattering), often performed using a flow-through capillary, should allow direct collection of monodisperse sample data. However, capillary fouling issues and non-baseline-resolved peaks can hamper its efficacy. The UltraScan solution modeler (US-SOMO) HPLC-SAXS (high-performance liquid chromatography coupled with SAXS) module provides a comprehensive framework to analyze such data, starting with a simple linear baseline correction and symmetrical Gaussian decomposition tools [Brookes, Pérez, Cardinali, Profumo, Vachette & Rocco (2013 ▸). J. Appl. Cryst.46, 1823–1833]. In addition to several new features, substantial improvements to both routines have now been implemented, comprising the evaluation of outcomes by advanced statistical tools. The novel integral baseline-correction procedure is based on the more sound assumption that the effect of capillary fouling on scattering increases monotonically with the intensity scattered by the material within the X-ray beam. Overlapping peaks, often skewed because of sample interaction with the column matrix, can now be accurately decomposed using non-symmetrical modified Gaussian functions. As an example, the case of a polydisperse solution of aldolase is analyzed: from heavily convoluted peaks, individual SAXS profiles of tetramers, octamers and dodecamers are extracted and reliably modeled.
Collapse
Affiliation(s)
- Emre Brookes
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3901, USA
| | - Patrice Vachette
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, F-91198, France
| | - Mattia Rocco
- Biopolimeri e Proteomica, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Largo R. Benzi 10, Genova, I-16132, Italy
| | - Javier Pérez
- SWING Beamline, Synchrotron SOLEIL, L'Orme des Merisiers, BP48, Saint-Aubin, Gif-sur-Yvette, F-91192, France
| |
Collapse
|
26
|
Vestergaard B. Analysis of biostructural changes, dynamics, and interactions – Small-angle X-ray scattering to the rescue. Arch Biochem Biophys 2016; 602:69-79. [DOI: 10.1016/j.abb.2016.02.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/17/2016] [Accepted: 02/26/2016] [Indexed: 12/27/2022]
|
27
|
Sterckx YGJ, Jové T, Shkumatov AV, Garcia-Pino A, Geerts L, De Kerpel M, Lah J, De Greve H, Van Melderen L, Loris R. A unique hetero-hexadecameric architecture displayed by the Escherichia coli O157 PaaA2-ParE2 antitoxin-toxin complex. J Mol Biol 2016; 428:1589-603. [PMID: 26996937 DOI: 10.1016/j.jmb.2016.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 10/24/2022]
Abstract
Many bacterial pathogens modulate their metabolic activity, virulence and pathogenicity through so-called "toxin-antitoxin" (TA) modules. The genome of the human pathogen Escherichia coli O157 contains two three-component TA modules related to the known parDE module. Here, we show that the toxin EcParE2 maps in a branch of the RelE/ParE toxin superfamily that is distinct from the branches that contain verified gyrase and ribosome inhibitors. The structure of EcParE2 closely resembles that of Caulobacter crescentus ParE but shows a distinct pattern of conserved surface residues, in agreement with its apparent inability to interact with GyrA. The antitoxin EcPaaA2 is characterized by two α-helices (H1 and H2) that serve as molecular recognition elements to wrap itself around EcParE2. Both EcPaaA2 H1 and H2 are required to sustain a high-affinity interaction with EcParE2 and for the inhibition of EcParE2-mediated killing in vivo. Furthermore, evidence demonstrates that EcPaaA2 H2, but not H1, determines specificity for EcParE2. The initially formed EcPaaA2-EcParE2 heterodimer then assembles into a hetero-hexadecamer, which is stable in solution and is formed in a highly cooperative manner. Together these findings provide novel data on quaternary structure, TA interactions and activity of a hitherto poorly characterized family of TA modules.
Collapse
Affiliation(s)
- Yann G-J Sterckx
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussel, Belgium; Structural Biology Research Centre, VIB, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Thomas Jové
- Génétique et Physiologie Bactérienne, Faculté des Sciences, Université Libre de Bruxelles (ULB), 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Alexander V Shkumatov
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussel, Belgium; Structural Biology Research Centre, VIB, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Abel Garcia-Pino
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussel, Belgium; Structural Biology Research Centre, VIB, Pleinlaan 2, B-1050 Brussel, Belgium; Génétique et Physiologie Bactérienne, Faculté des Sciences, Université Libre de Bruxelles (ULB), 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Lieselotte Geerts
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussel, Belgium
| | - Maia De Kerpel
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussel, Belgium; Structural Biology Research Centre, VIB, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Jurij Lah
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Henri De Greve
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussel, Belgium; Structural Biology Research Centre, VIB, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Laurence Van Melderen
- Génétique et Physiologie Bactérienne, Faculté des Sciences, Université Libre de Bruxelles (ULB), 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussel, Belgium; Structural Biology Research Centre, VIB, Pleinlaan 2, B-1050 Brussel, Belgium.
| |
Collapse
|