1
|
Vivenzio VM, Esposito D, Monti SM, De Simone G. Bacterial α-CAs: a biochemical and structural overview. Enzymes 2024; 55:31-63. [PMID: 39222995 DOI: 10.1016/bs.enz.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Carbonic anhydrases belonging to the α-class are widely distributed in bacterial species. These enzymes have been isolated from bacteria with completely different characteristics including both Gram-negative and Gram-positive strains. α-CAs show a considerable similarity when comparing the biochemical, kinetic and structural features, with only small differences which reflect the diverse role these enzymes play in Nature. In this chapter, we provide a comprehensive overview on bacterial α-CA data, with a highlight to their potential biomedical and biotechnological applications.
Collapse
|
2
|
Hull JA, Lee C, Kim JK, Lim SW, Park J, Park S, Lee SJ, Park G, Eom I, Kim M, Hyun H, Combs JE, Andring JT, Lomelino C, Kim CU, McKenna R. XFEL structure of carbonic anhydrase II: a comparative study of XFEL, NMR, X-ray and neutron structures. Acta Crystallogr D Struct Biol 2024; 80:194-202. [PMID: 38411550 PMCID: PMC10910541 DOI: 10.1107/s2059798324000482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024] Open
Abstract
The combination of X-ray free-electron lasers (XFELs) with serial femtosecond crystallography represents cutting-edge technology in structural biology, allowing the study of enzyme reactions and dynamics in real time through the generation of `molecular movies'. This technology combines short and precise high-energy X-ray exposure to a stream of protein microcrystals. Here, the XFEL structure of carbonic anhydrase II, a ubiquitous enzyme responsible for the interconversion of CO2 and bicarbonate, is reported, and is compared with previously reported NMR and synchrotron X-ray and neutron single-crystal structures.
Collapse
Affiliation(s)
- Joshua A. Hull
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Cheol Lee
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin Kyun Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seon Woo Lim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaehyun Park
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
- Department of Chemical Engineering, POSTECH, Pohang 37673, Republic of Korea
| | - Sehan Park
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Sang Jae Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Gisu Park
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - HyoJung Hyun
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Jacob E. Combs
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jacob T. Andring
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Carrie Lomelino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chae Un Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Somalinga V, Foss E, Grunden AM. Biochemical characterization of a psychrophilic and halotolerant α-carbonic anhydrase from a deep-sea bacterium, Photobacterium profundum. AIMS Microbiol 2023; 9:540-553. [PMID: 37649802 PMCID: PMC10462458 DOI: 10.3934/microbiol.2023028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 09/01/2023] Open
Abstract
Prokaryotic α-carbonic anhydrases (α-CA) are metalloenzymes that catalyze the reversible hydration of CO2 to bicarbonate and proton. We had reported the first crystal structure of a pyschrohalophilic α-CA from a deep-sea bacterium, Photobacterium profundum SS9. In this manuscript, we report the first biochemical characterization of P. profundum α-CA (PprCA) which revealed several catalytic properties that are atypical for this class of CA's. Purified PprCA exhibited maximal catalytic activity at psychrophilic temperatures with substantial decrease in activity at mesophilic and thermophilic range. Similar to other α-CA's, Ppr9A showed peak activity at alkaline pH (pH 11), although, PprCA retained 88% of its activity even at acidic pH (pH 5). Exposing PprCA to varying concentrations of oxidizing and reducing agents revealed that N-terminal cysteine residues in PprCA may play a role in the structural stability of the enzyme. Although inefficient in CO2 hydration activity under mesophilic and thermophilic temperatures, PprCA exhibited salt-dependent thermotolerance and catalytic activity under extreme halophilic conditions. Similar to other well-characterized α-CA's, PprCA is also inhibited by monovalent anions even at low concentrations. Finally, we demonstrate that PprCA accelerates CO2 biomineralization to calcium carbonate under alkaline conditions.
Collapse
Affiliation(s)
- Vijayakumar Somalinga
- Department of Biological & Biomedical Sciences, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, OK 73096, USA
| | - Emily Foss
- Department of Biological & Biomedical Sciences, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, OK 73096, USA
| | - Amy M. Grunden
- Department of Plant and Microbial Biology, North Carolina State University, 4550A Thomas Hall, Campus Box 7612, Raleigh, NC 27695, USA
| |
Collapse
|
4
|
Liao M, Dong R, Li L, Liu X, Wang Y, Bai Y, Luo H, Yao B, Huang H, Tu T. High Production of Maltooligosaccharides in the Starch Liquefaction Process: A Study on the Hyperthermophilic Mechanism of α-Amylase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6480-6489. [PMID: 36959740 DOI: 10.1021/acs.jafc.3c00665] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The efficient production of high-value-added bioproducts from starchy substances requires α-amylases with hyperthermophilic properties for industrial starch liquefaction. In this study, two hyperthermophilic α-amylases with significant differences in thermostability, PfAmy and TeAmy, were comparatively studied through structural analysis, domain swapping, and site-directed mutagenesis, finding that three residues, His152, Cys166, and His168, located in domain B were the main contributors to hyperthermostability. The effects of these three residues were strongly synergistic, causing the optimum temperature for the mutant K152H/A166C/E168H of TeAmy to shift to 95-100 °C and stabilize at 90 °C without Ca2+. Compared to PfAmy and TeAmy, the mutant K152H/A166C/E168H, respectively, exhibited 1.7- and 2.5-times higher starch hydrolysis activity at 105 °C and pH 5.5 (10411 ± 70 U/mg) and released 1.1- and 1.7-times more maltooligosaccharides from 1% starch. This work has interpreted the hyperthermophilic mechanism of α-amylase and thereby providing a potential candidate for the efficient industrial conversion of starch to bioproducts.
Collapse
Affiliation(s)
- Min Liao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruyue Dong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lanxue Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Mboge MY, Coombs J, Singh S, Andring J, Wolff A, Tu C, Zhang Z, McKenna R, Frost SC. Inhibition of Carbonic Anhydrase Using SLC-149: Support for a Noncatalytic Function of CAIX in Breast Cancer. J Med Chem 2021; 64:1713-1724. [PMID: 33523653 PMCID: PMC9945910 DOI: 10.1021/acs.jmedchem.0c02077] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Carbonic anhydrase IX (CAIX) is considered a target for therapeutic intervention in solid tumors. In this study, the efficacy of the inhibitor, 4-(3-(2,4-difluorophenyl)-oxoimidazolidin-1-yl)benzenesulfonamide (SLC-149), is evaluated on CAIX and a CAIX-mimic. We show that SLC-149 is a better inhibitor than acetazolamide against CAIX. Binding of SLC-149 thermally stabilizes CAIX-mimic at lower concentrations compared to that of CAII. Structural examinations of SLC-149 bound to CAIX-mimic and CAII explain binding preferences. In cell culture, SLC-149 is a more effective inhibitor of CAIX activity in a triple-negative breast cancer cell line than previously studied sulfonamide inhibitors. SLC-149 is also a better inhibitor of activity in cells expressing CAIX versus CAXII. However, SLC-149 has little effect on cytotoxicity, and high concentrations are required to inhibit cell growth, migration, and invasion. These data support the hypothesis that CAIX activity, shown to be important in regulating extracellular pH, does not underlie its ability to control cell growth.
Collapse
Affiliation(s)
- Mam Y. Mboge
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Jacob Coombs
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Srishti Singh
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Jacob Andring
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Alyssa Wolff
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Chingkuang Tu
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Zaihui Zhang
- SignalChem Lifesciences Corp 13120 Vanier Place, Richmond, British Columbia V6V 2J2
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Susan C. Frost
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Andring J, Combs J, McKenna R. Aspirin: A Suicide Inhibitor of Carbonic Anhydrase II. Biomolecules 2020; 10:biom10040527. [PMID: 32244293 PMCID: PMC7226357 DOI: 10.3390/biom10040527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/31/2022] Open
Abstract
Carbonic anhydrase II (CAII) is a metalloenzyme that catalyzes the reversible hydration/dehydration of CO2/HCO3−. In addition, CAII is attributed to other catalytic reactions, including esterase activity. Aspirin (acetyl-salicylic acid), an everyday over-the-counter drug, has both ester and carboxylic acid moieties. Recently, compounds with a carboxylic acid group have been shown to inhibit CAII. Hence, we hypothesized that Aspirin could act as a substrate for esterase activity, and the product salicylic acid (SA), an inhibitor of CAII. Here, we present the crystal structure of CAII in complex with SA, a product of CAII crystals pre-soaked with Aspirin, to 1.35Å resolution. In addition, we provide kinetic data to support the observation that CAII converts Aspirin to its deacetylated form, SA. This data may also explain the short half-life of Aspirin, with CAII so abundant in blood, and that Aspirin could act as a suicide inhibitor of CAII.
Collapse
|
7
|
Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Q Rev Biophys 2019; 51:e10. [PMID: 30912486 DOI: 10.1017/s0033583518000082] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of rational drug design is to develop small molecules using a quantitative approach to optimize affinity. This should enhance the development of chemical compounds that would specifically, selectively, reversibly, and with high affinity interact with a target protein. It is not yet possible to develop such compounds using computational (i.e., in silico) approach and instead the lead molecules are discovered in high-throughput screening searches of large compound libraries. The main reason why in silico methods are not capable to deliver is our poor understanding of the compound structure-thermodynamics and structure-kinetics correlations. There is a need for databases of intrinsic binding parameters (e.g., the change upon binding in standard Gibbs energy (ΔGint), enthalpy (ΔHint), entropy (ΔSint), volume (ΔVintr), heat capacity (ΔCp,int), association rate (ka,int), and dissociation rate (kd,int)) between a series of closely related proteins and a chemically diverse, but pharmacophoric group-guided library of compounds together with the co-crystal structures that could help explain the structure-energetics correlations and rationally design novel compounds. Assembly of these data will facilitate attempts to provide correlations and train data for modeling of compound binding. Here, we report large datasets of the intrinsic thermodynamic and kinetic data including over 400 primary sulfonamide compound binding to a family of 12 catalytically active human carbonic anhydrases (CA). Thermodynamic parameters have been determined by the fluorescent thermal shift assay, isothermal titration calorimetry, and by the stopped-flow assay of the inhibition of enzymatic activity. Kinetic measurements were performed using surface plasmon resonance. Intrinsic thermodynamic and kinetic parameters of binding were determined by dissecting the binding-linked protonation reactions of the protein and sulfonamide. The compound structure-thermodynamics and kinetics correlations reported here helped to discover compounds that exhibited picomolar affinities, hour-long residence times, and million-fold selectivities over non-target CA isoforms. Drug-lead compounds are suggested for anticancer target CA IX and CA XII, antiglaucoma CA IV, antiobesity CA VA and CA VB, and other isoforms. Together with 85 X-ray crystallographic structures of 60 compounds bound to six CA isoforms, the database should be of help to continue developing the principles of rational target-based drug design.
Collapse
|
8
|
Jo BH, Im SK, Cha HJ. Halotolerant carbonic anhydrase with unusual N-terminal extension from marine Hydrogenovibrio marinus as novel biocatalyst for carbon sequestration under high-salt environments. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.05.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Murray AB, Lomelino CL, Supuran CT, McKenna R. "Seriously Sweet": Acesulfame K Exhibits Selective Inhibition Using Alternative Binding Modes in Carbonic Anhydrase Isoforms. J Med Chem 2018; 61:1176-1181. [PMID: 29266943 DOI: 10.1021/acs.jmedchem.7b01470] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Human carbonic anhydrase IX (CA IX) is upregulated in neoplastic tissues; as such, it is studied as a drug target for anticancer chemotherapy. Inhibition of CA IX has been shown to be therapeutically favorable in terms of reducing tumor growth. Previously, saccharin, a commonly used artificial sweetener, has been observed to selectively inhibit CA IX over other CA isoforms. In this study, X-ray crystallography showed acesulfame potassium (Ace K) binding directly to the catalytic zinc in CA IX (mimic) and through a bridging water in CA II. This modulation in binding is reflected in the binding constants, with Ace K inhibiting CA IX but not other CA isoforms. Hence, this study establishes the potential of Ace K (an FDA approved food additive) as a lead compound in the design and development of CA IX specific inhibitors.
Collapse
Affiliation(s)
- Akilah B Murray
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida , Gainesville, Florida 32610, United States
| | - Carrie L Lomelino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida , Gainesville, Florida 32610, United States
| | - Claudiu T Supuran
- Sezione di Farmaceutica e Nutraceutica, NEUROFARBA, University of Florence , Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida , Gainesville, Florida 32610, United States
| |
Collapse
|
10
|
Mahon BP, Bhatt A, Socorro L, Driscoll JM, Okoh C, Lomelino CL, Mboge MY, Kurian JJ, Tu C, Agbandje-McKenna M, Frost SC, McKenna R. The Structure of Carbonic Anhydrase IX Is Adapted for Low-pH Catalysis. Biochemistry 2016; 55:4642-53. [PMID: 27439028 DOI: 10.1021/acs.biochem.6b00243] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Human carbonic anhydrase IX (hCA IX) expression in many cancers is associated with hypoxic tumors and poor patient outcome. Inhibitors of hCA IX have been used as anticancer agents with some entering Phase I clinical trials. hCA IX is transmembrane protein whose catalytic domain faces the extracellular tumor milieu, which is typically associated with an acidic microenvironment. Here, we show that the catalytic domain of hCA IX (hCA IX-c) exhibits the necessary biochemical and biophysical properties that allow for low pH stability and activity. Furthermore, the unfolding process of hCA IX-c appears to be reversible, and its catalytic efficiency is thought to be correlated directly with its stability between pH 3.0 and 8.0 but not above pH 8.0. To rationalize this, we determined the X-ray crystal structure of hCA IX-c to 1.6 Å resolution. Insights from this study suggest an understanding of hCA IX-c stability and activity in low-pH tumor microenvironments and may be applicable to determining pH-related effects on enzymes.
Collapse
Affiliation(s)
- Brian P Mahon
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Avni Bhatt
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Lilien Socorro
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Jenna M Driscoll
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Cynthia Okoh
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Carrie L Lomelino
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Mam Y Mboge
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Justin J Kurian
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Chingkuang Tu
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Susan C Frost
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| |
Collapse
|
11
|
Vullo D, Bhatt A, Mahon BP, McKenna R, Supuran CT. Sulfonamide inhibition studies of the α-carbonic anhydrase from the gammaproteobacterium Thiomicrospira crunogena XCL-2, TcruCA. Bioorg Med Chem Lett 2016; 26:401-405. [PMID: 26691758 DOI: 10.1016/j.bmcl.2015.11.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 11/28/2015] [Accepted: 11/30/2015] [Indexed: 11/26/2022]
Abstract
We report a sulfonamide/sulfamate inhibition study of the α-carbonic anhydrase (CA, EC 4.2.1.1) present in the gammaproteobacterium Thiomicrospira crunogena XCL-2, a mesophilic hydrothermal vent-isolate organism, TcruCA. As Thiomicrospira crunogena is one of thousands of marine organisms that uses CA for metabolic regulation, the effect of sulfonamide inhibition has been considered. Sulfonamide-based drugs have been widely used in a variety of antibiotics, and bioelimination of these compounds results in exposure of these compounds to marine life. The enzyme was highly inhibited, with Ki values ranging from 2.5 to 40.7nM by a variety of sulfonamides including acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide, benzolamide and benzenesulfonamides incorporating 4-hydroxyalkyl moieties. Less effective inhibitors were topiramate, zonisamide, celecoxib, saccharin and hydrochlorothiazide as well as simple benzenesulfonamides incorporating amino, halogeno, alkyl, aminoalkyl and other moieties in the ortho- or para-positions of the aromatic ring (Kis of 202-933nM). The active site interactions between TcruCA and three clinically-used CA inhibitors, acetazolamide (Diamox®), dorzolamide (Trusopt®), and brinzolamide (Azopt®) are studied using molecular docking to provide insight into the reported Ki values. Comparison between various enzymes belonging to this family may also bring interesting hints in these fascinating phenomena.
Collapse
Affiliation(s)
- Daniela Vullo
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Avni Bhatt
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA
| | - Brian P Mahon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Polo Scientifico, Neurofarba Department and Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
12
|
Mahon BP, Bhatt A, Vullo D, Supuran CT, McKenna R. Exploration of anionic inhibition of the α-carbonic anhydrase from Thiomicrospira crunogena XCL-2 gammaproteobacterium: A potential bio-catalytic agent for industrial CO2 removal. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.07.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Mahon BP, Lomelino CL, Salguero AL, Driscoll JM, Pinard MA, McKenna R. Observed surface lysine acetylation of human carbonic anhydrase II expressed in Escherichia coli. Protein Sci 2015; 24:1800-7. [PMID: 26266677 DOI: 10.1002/pro.2771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/10/2015] [Indexed: 11/06/2022]
Abstract
Acetylation of surface lysine residues of proteins has been observed in Escherichia coli (E. coli), an organism that has been extensively utilized for recombinant protein expression. This post-translational modification is shown to be important in various processes such as metabolism, stress-response, transcription, and translation. As such, utilization of E. coli expression systems for protein production may yield non-native acetylation events of surface lysine residues. Here we present the crystal structures of wild-type and a variant of human carbonic anhydrase II (hCA II) that have been expressed in E. coli and exhibit surface lysine acetylation and we speculate on the effect this has on the conformational stability of each enzyme. Both structures were determined to 1.6 Å resolution and show clear electron density for lysine acetylation. The lysine acetylation does not distort the structure and the surface lysine acetylation events most likely do not interfere with the biological interpretation. However, there is a reduction in conformational stability in the hCA II variant compared to wild type (∼ 4°C decrease). This may be due to other lysine acetylation events that have occurred but are not visible in the crystal structure due to intrinsic disorder. Therefore, surface lysine acetylation events may affect overall protein stability and crystallization, and should be considered when using E. coli expression systems.
Collapse
Affiliation(s)
- Brian P Mahon
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Carrie L Lomelino
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Antonieta L Salguero
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Jenna M Driscoll
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Melissa A Pinard
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, 32610
| |
Collapse
|