Tombul M, Guven K. catena-Poly[[diaqua-rubidium(I)](μ(2)-3-carboxy-pyrazine-2-carboxyl-ato)(μ(2)-pyrazine-2,3-dicarboxylic acid)].
Acta Crystallogr Sect E Struct Rep Online 2009;
65:m213-4. [PMID:
21581808 PMCID:
PMC2968173 DOI:
10.1107/s1600536809002001]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 01/15/2009] [Indexed: 11/10/2022]
Abstract
The structural unit of the title compound, [Rb(C(6)H(3)N(2)O(4))(C(6)H(4)N(2)O(4))(H(2)O)(2)](n), consists of one rubidium cation, one hydrogen pyrazine-2,3-dicarboxyl-ate anion, one pyrazine-2,3-dicarboxylic acid mol-ecule and two water mol-ecules. This formulation is repeated twice in the asymmetric unit as the rubidium cation lies on an inversion centre. Each anion or acid mol-ecule is linked to two rubidium cations, while the rubidium cation has close contacts to four symmetry-equivalent organic ligands, with two different coordination modes towards this cation. In addition, each rubidium cation is coordinated by two water O atoms, raising the coordination number to eight. One of the carboxyl groups of the acid holds its H atom, which forms a hydrogen bond to a coordinated water mol-ecule. The other carboxyl group is deprotonated in half of the ligands and protonated in the other half, taking part in a strong O-H⋯O hydrogen bond disordered over an inversion centre. The stabil-ization of the crystal structure is further assisted by O-H⋯O and O-H⋯N hydrogen-bonding inter-actions involving the water mol-ecules and carboxyl-ate O atoms.
Collapse