Fagbohun OF, Olawoye B, Ademakinwa AN, Oriyomi OV, Fagbohun OS, Fadare OA, Msagati TAM. UHPLC/GC-TOF-MS metabolomics, MTT assay, and molecular docking studies reveal physostigmine as a new anticancer agent from the ethyl acetate and butanol fractions of Kigelia africana (Lam.) Benth. fruit extracts.
Biomed Chromatogr 2020;
35:e4979. [PMID:
32895963 DOI:
10.1002/bmc.4979]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/08/2022]
Abstract
Kigelia africana plant is widely used as a herbal remedy in preventing the onset and the treatment of cancer-related infections. With the increase in the research interest of the plant, the specific chemical compound or metabolite that confers its anticancer properties has not been adequately investigated. The ethyl acetate and butanol fractions of the fruit extracts were evaluated by 2-(4,5-dimethylthiazol-2-yl)-3,5-diphenyl-2H-tetrazolium bromide assay against four different cell lines, with the ethyl acetate fraction having inhibition concentration values of 0.53 and 0.42 μM against Hep G2 and HeLa cells, respectively. More than 235 phytoconstituents were profiled using UHPLC-TOF-MS, while more than 15 chemical compounds were identified using GC-MS from the fractions. Molecular docking studies revealed that physostigmine, fluazifop, dexamethasone, sulfisomidine, and desmethylmirtazapine could favorably bind at higher binding energies of -8.3, -8.6, -8.2, and -8.1 kcal/mol, respectively, better than camptothecin with a binding energy of -7.9 kcal/mol. The results of this study showed that physostigmine interacted well with topoisomerase IIα and had a high score of pharmacokinetic prediction using absorption, distribution, metabolism, excretion, and toxicity profiles, thereby suggesting that drug design using physostigmine as a base structure could serve as an alternative against the toxic side effects of doxorubicin and camptothecin.
Collapse