Moula G, Bag J, Bose M, Barman S, Pal K. Oxygen Activation by a Copper Complex with Sulfur-Only Coordination Relevant to the Formylglycine Generating Enzyme.
Inorg Chem 2022;
61:6660-6671. [PMID:
35446020 DOI:
10.1021/acs.inorgchem.2c00746]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthesizing hydrosulfido Cu thiolate complexes is quite challenging. In this report, two new and rare hydrosulfido Cu thiolate complexes, [Et4N]2[(mnt)Cu-SH] (2, mnt = maleonitrile dithiolene = S2C2(CN)2) and [Et4N]3[(mnt)Cu-(μ-SH)-Cu(mnt)] (3), have been synthesized. Coordination sites and O2 activation by complex 2 resemble the formylglycine generating enzyme (FGE), an enzyme recently crystallographically characterized with sulfur-only coordination around Cu (three thiolate ligands). The function of this enzyme (and complex 2) is surprising because vulnerable thiolates should not be well suited for O2 activation rationally. Indeed, activation of oxygen by such an all-sulfur-coordinated Cu complex 2 is lacking in the literature. Aerial O2 (ambient O2 from the air) activation by complex 2 could proceed through a superoxide radical intermediate and a sulfur radical intermediate detected by resonance Raman (rR) spectroscopy and electron paramagnetic resonance (EPR) spectroscopy, respectively. The chemistry of 2 has been examined by its reactivity, crystal structure, and spectroscopic and cyclic voltammetric analyses. In addition, the results have been complemented with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations.
Collapse