Liu S, Zhang Y, Yang Q, Zhang Y, Liu H, Huang MH, Wang R, Lu F. PKC signal amplification suppresses non-small cell lung cancer growth by promoting p21 expression and phosphorylation.
Heliyon 2022;
8:e10657. [PMID:
36158087 PMCID:
PMC9494247 DOI:
10.1016/j.heliyon.2022.e10657]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/13/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Protein kinase C (PKC) activation was previously associated with oncogenic features. However, small molecule inhibitors targeting PKC have so far proved ineffective in a number of clinical trials for cancer treatment. Recent progresses have revealed that most PKC mutations detected in diverse cancers actually lead to loss-of-function, thus suggesting the tumor-suppressive roles of PKC proteins. Unfortunately, the development of chemicals to enhance PKC activity is lagging behind relative to its small molecular inhibitors. Here, we report that a bisindolylmaleimide derivative (3,4-bis(1-(prop-2-ynyl)-1H-indol-3-yl)-1 H-pyrrole-2,5-dione, BD-15) significantly inhibited cell growth in non-small cell lung cancer (NSCLC). Mechanistically, BD-15 treatment resulted in markedly enhanced phosphorylation of PKC substrates and led to cell cycle arrest in G2/M. Further, BD-15 treatment upregulated p21 protein levels and enhanced p21 phosphorylation. BD-15 also promoted caspase3 cleavage and triggered cellular apoptosis. In xenograft mouse models, BD-15 exerted anti-tumor effects to suppress in vivo tumor formation. Collectively, our findings revealed the tumor-suppressive roles of BD-15 through enhancing PKC signaling and thus leading to upregulation of p21 expression and phosphorylation.
Collapse