1
|
Maiti S, Singh A, Maji T, Saibo NV, De S. Experimental methods to study the structure and dynamics of intrinsically disordered regions in proteins. Curr Res Struct Biol 2024; 7:100138. [PMID: 38707546 PMCID: PMC11068507 DOI: 10.1016/j.crstbi.2024.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 05/07/2024] Open
Abstract
Eukaryotic proteins often feature long stretches of amino acids that lack a well-defined three-dimensional structure and are referred to as intrinsically disordered proteins (IDPs) or regions (IDRs). Although these proteins challenge conventional structure-function paradigms, they play vital roles in cellular processes. Recent progress in experimental techniques, such as NMR spectroscopy, single molecule FRET, high speed AFM and SAXS, have provided valuable insights into the biophysical basis of IDP function. This review discusses the advancements made in these techniques particularly for the study of disordered regions in proteins. In NMR spectroscopy new strategies such as 13C detection, non-uniform sampling, segmental isotope labeling, and rapid data acquisition methods address the challenges posed by spectral overcrowding and low stability of IDPs. The importance of various NMR parameters, including chemical shifts, hydrogen exchange rates, and relaxation measurements, to reveal transient secondary structures within IDRs and IDPs are presented. Given the high flexibility of IDPs, the review outlines NMR methods for assessing their dynamics at both fast (ps-ns) and slow (μs-ms) timescales. IDPs exert their functions through interactions with other molecules such as proteins, DNA, or RNA. NMR-based titration experiments yield insights into the thermodynamics and kinetics of these interactions. Detailed study of IDPs requires multiple experimental techniques, and thus, several methods are described for studying disordered proteins, highlighting their respective advantages and limitations. The potential for integrating these complementary techniques, each offering unique perspectives, is explored to achieve a comprehensive understanding of IDPs.
Collapse
Affiliation(s)
| | - Aakanksha Singh
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Tanisha Maji
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Nikita V. Saibo
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| |
Collapse
|
2
|
Hirai M, Arai S, Iwase H. Fibrillization Process of Human Amyloid-Beta Protein (1-40) under a Molecular Crowding Environment Mimicking the Interior of Living Cells Using Cell Debris. Molecules 2023; 28:6555. [PMID: 37764331 PMCID: PMC10535490 DOI: 10.3390/molecules28186555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular crowding environments play a crucial role in understanding the mechanisms of biological reactions. Inside living cells, a diverse array of molecules coexists within a volume fraction ranging from 10% to 30% v/v. However, conventional spectroscopic methods often face difficulties in selectively observing the structures of particular proteins or membranes within such molecularly crowded environments due to the presence of high background signals. Therefore, it is crucial to establish in vitro measurement conditions that closely resemble the intracellular environment. Meanwhile, the neutron scattering method offers a significant advantage in selectively observing target biological components, even within crowded environments. Recently, we have demonstrated a novel scattering method capable of selectively detecting the structures of targeted proteins or membranes in a closely mimicking intracellular milieu achieved utilizing whole-cell contents (deuterated-cell debris). This method relies on the inverse contrast matching technique in neutron scattering. By employing this method, we successfully observed the fibrillization process of human amyloid beta-protein (Aβ 1-40) under a molecular crowding environment (13.1% w/v cell debris, Aβ/cell debris = ~1/25 w/w) that closely mimics the interior of living cells. Aβ protein is well known as a major pathogenic component of Alzheimer's disease. The present results combining model simulation analyses clearly show that the intracellular environment facilitates the potential formation of even more intricate higher-order aggregates of Aβ proteins than those previously reported.
Collapse
Affiliation(s)
- Mitsuhiro Hirai
- Graduate School of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi 371-8510, Gunma, Japan
| | - Shigeki Arai
- National Institute for Quantum and Radiological Science and Technology, Tokai 319-1106, Ibaraki, Japan;
| | - Hiroki Iwase
- Comprehensive Research Organization for Science and Society (CROSS), Tokai 319-1106, Ibaraki, Japan;
| |
Collapse
|
3
|
Yagi-Utsumi M, Kato K. Conformational Variability of Amyloid-β and the Morphological Diversity of Its Aggregates. Molecules 2022; 27:4787. [PMID: 35897966 PMCID: PMC9369837 DOI: 10.3390/molecules27154787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Protein folding is the most fundamental and universal example of biomolecular self-organization and is characterized as an intramolecular process. In contrast, amyloidogenic proteins can interact with one another, leading to protein aggregation. The energy landscape of amyloid fibril formation is characterized by many minima for different competing low-energy structures and, therefore, is much more enigmatic than that of multiple folding pathways. Thus, to understand the entire energy landscape of protein aggregation, it is important to elucidate the full picture of conformational changes and polymorphisms of amyloidogenic proteins. This review provides an overview of the conformational diversity of amyloid-β (Aβ) characterized from experimental and theoretical approaches. Aβ exhibits a high degree of conformational variability upon transiently interacting with various binding molecules in an unstructured conformation in a solution, forming an α-helical intermediate conformation on the membrane and undergoing a structural transition to the β-conformation of amyloid fibrils. This review also outlines the structural polymorphism of Aβ amyloid fibrils depending on environmental factors. A comprehensive understanding of the energy landscape of amyloid formation considering various environmental factors will promote drug discovery and therapeutic strategies by controlling the fibril formation pathway and targeting the consequent morphology of aggregated structures.
Collapse
Affiliation(s)
- Maho Yagi-Utsumi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| |
Collapse
|
4
|
Yunoki Y, Matsumoto A, Morishima K, Martel A, Porcar L, Sato N, Yogo R, Tominaga T, Inoue R, Yagi-Utsumi M, Okuda A, Shimizu M, Urade R, Terauchi K, Kono H, Yagi H, Kato K, Sugiyama M. Overall structure of fully assembled cyanobacterial KaiABC circadian clock complex by an integrated experimental-computational approach. Commun Biol 2022; 5:184. [PMID: 35273347 PMCID: PMC8913699 DOI: 10.1038/s42003-022-03143-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/08/2022] [Indexed: 12/24/2022] Open
Abstract
In the cyanobacterial circadian clock system, KaiA, KaiB and KaiC periodically assemble into a large complex. Here we determined the overall structure of their fully assembled complex by integrating experimental and computational approaches. Small-angle X-ray and inverse contrast matching small-angle neutron scatterings coupled with size-exclusion chromatography provided constraints to highlight the spatial arrangements of the N-terminal domains of KaiA, which were not resolved in the previous structural analyses. Computationally built 20 million structural models of the complex were screened out utilizing the constrains and then subjected to molecular dynamics simulations to examine their stabilities. The final model suggests that, despite large fluctuation of the KaiA N-terminal domains, their preferential positionings mask the hydrophobic surface of the KaiA C-terminal domains, hindering additional KaiA-KaiC interactions. Thus, our integrative approach provides a useful tool to resolve large complex structures harboring dynamically fluctuating domains. The revealed full KaiA12B6C6 complex is assembled including the dynamic and asynchronous KaiA N-terminal domains that have been missing in cryo-EM structures.
Collapse
Affiliation(s)
- Yasuhiro Yunoki
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya, 467-8603, Japan.,Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashironishi, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Atsushi Matsumoto
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Umemidai, Kizu, Kyoto, 619-0215, Japan
| | - Ken Morishima
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashironishi, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Anne Martel
- Institut Laue-Langevin, 71, avenue des martyrs, 38042, Grenoble, France
| | - Lionel Porcar
- Institut Laue-Langevin, 71, avenue des martyrs, 38042, Grenoble, France
| | - Nobuhiro Sato
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashironishi, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Rina Yogo
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya, 467-8603, Japan.,Biomedical Research Centre, School of Biomedical Engineering, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Taiki Tominaga
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki, 319-1106, Japan
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashironishi, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya, 467-8603, Japan
| | - Aya Okuda
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashironishi, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Masahiro Shimizu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashironishi, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Reiko Urade
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashironishi, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Kazuki Terauchi
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Hidetoshi Kono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Umemidai, Kizu, Kyoto, 619-0215, Japan.
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya, 467-8603, Japan.
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan. .,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya, 467-8603, Japan.
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashironishi, Kumatori, Sennan-gun, Osaka, 590-0494, Japan.
| |
Collapse
|
5
|
Perez-Salas U, Garg S, Gerelli Y, Porcar L. Deciphering lipid transfer between and within membranes with time-resolved small-angle neutron scattering. CURRENT TOPICS IN MEMBRANES 2021; 88:359-412. [PMID: 34862031 DOI: 10.1016/bs.ctm.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review focuses on time-resolved neutron scattering, particularly time-resolved small angle neutron scattering (TR-SANS), as a powerful in situ noninvasive technique to investigate intra- and intermembrane transport and distribution of lipids and sterols in lipid membranes. In contrast to using molecular analogues with potentially large chemical tags that can significantly alter transport properties, small angle neutron scattering relies on the relative amounts of the two most abundant isotope forms of hydrogen: protium and deuterium to detect complex membrane architectures and transport processes unambiguously. This review discusses advances in our understanding of the mechanisms that sustain lipid asymmetry in membranes-a key feature of the plasma membrane of cells-as well as the transport of lipids between membranes, which is an essential metabolic process.
Collapse
Affiliation(s)
- Ursula Perez-Salas
- Physics Department, University of Illinois at Chicago, Chicago, IL, United States.
| | - Sumit Garg
- Physics Department, University of Illinois at Chicago, Chicago, IL, United States
| | - Yuri Gerelli
- Department of Life and Environmental Sciences, Universita` Politecnica delle Marche, Ancona, Italy
| | | |
Collapse
|
6
|
Okuda A, Inoue R, Morishima K, Saio T, Yunoki Y, Yagi-Utsumi M, Yagi H, Shimizu M, Sato N, Urade R, Kato K, Sugiyama M. Deuteration Aiming for Neutron Scattering. Biophys Physicobiol 2021; 18:16-27. [PMID: 33954079 PMCID: PMC8049778 DOI: 10.2142/biophysico.bppb-v18.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/03/2021] [Indexed: 01/17/2023] Open
Abstract
The distinguished feature of neutron as a scattering probe is an isotope effect, especially the large difference in neutron scattering length between hydrogen and deuterium. The difference renders the different visibility between hydrogenated and deuterated proteins. Therefore, the combination of deuterated protein and neutron scattering enables the selective visualization of a target domain in the complex or a target protein in the multi-component system. Despite of this fascinating character, there exist several problems for the general use of this method: difficulty and high cost for protein deuteration, and control and determination of deuteration ratio of the sample. To resolve them, the protocol of protein deuteration techniques is presented in this report. It is strongly expected that this protocol will offer more opportunity for conducting the neutron scattering studies with deuterated proteins.
Collapse
Affiliation(s)
- Aya Okuda
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Osaka 590-0494 Japan
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Osaka 590-0494 Japan
| | - Ken Morishima
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Osaka 590-0494 Japan
| | - Tomohide Saio
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Yasuhiro Yunoki
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan
| | - Maho Yagi-Utsumi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan
| | - Masahiro Shimizu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Osaka 590-0494 Japan
| | - Nobuhiro Sato
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Osaka 590-0494 Japan
| | - Reiko Urade
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Osaka 590-0494 Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Osaka 590-0494 Japan
| |
Collapse
|
7
|
Sato N, Yogo R, Yanaka S, Martel A, Porcar L, Morishima K, Inoue R, Tominaga T, Arimori T, Takagi J, Sugiyama M, Kato K. A feasibility study of inverse contrast-matching small-angle neutron scattering method combined with size exclusion chromatography using antibody interactions as model systems. J Biochem 2021; 169:701-708. [PMID: 33585933 DOI: 10.1093/jb/mvab012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/24/2021] [Indexed: 01/06/2023] Open
Abstract
Small-angle neutron scattering (SANS) and small- angle X-ray scattering (SAXS) are powerful techniques for the structural characterization of biomolecular complexes. In particular, SANS enables a selective observation of specific components in complexes by selective deuteration with contrast-matching techniques. In most cases, however, biomolecular interaction systems with heterogeneous oligomers often contain unfavorable aggregates and unbound species, hampering data interpretation. To overcome these problems, SAXS has been recently combined with size exclusion chromatography (SEC), which enables the isolation of the target complex in a multi-component system. By contrast, SEC-SANS is only at a preliminary stage. Hence, we herein perform a feasibility study of this method based on our newly developed inverse contrast-matching (iCM) SANS technique using antibody interactions as model systems. Immunoglobulin G (IgG) or its Fc fragment was mixed with 75% deuterated Fc-binding proteins, i.e. a mutated form of IgG-degrading enzyme of Streptococcus pyogenes and a soluble form of Fcγ receptor IIIb, and subjected to SEC-SANS as well as SEC-SAXS as reference. We successfully observe SANS from the non-deuterated IgG or Fc formed in complex with these binding partners, which were unobservable in terms of SANS in D2O, hence demonstrating the potential utility of the SEC-iCM-SANS approach.
Collapse
Affiliation(s)
- Nobuhiro Sato
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Osaka 590-0494, Japan
| | - Rina Yogo
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Saeko Yanaka
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Anne Martel
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042, Grenoble, France
| | - Lionel Porcar
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042, Grenoble, France
| | - Ken Morishima
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Osaka 590-0494, Japan
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Osaka 590-0494, Japan
| | - Taiki Tominaga
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki 319-1106, Japan
| | - Takao Arimori
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Osaka 590-0494, Japan
| | - Koichi Kato
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
8
|
Inoue R, Sakamaki Y, Takata T, Wood K, Morishima K, Sato N, Okuda A, Shimizu M, Urade R, Fujii N, Sugiyama M. Elucidation of the mechanism of subunit exchange in αB crystallin oligomers. Sci Rep 2021; 11:2555. [PMID: 33510404 PMCID: PMC7843597 DOI: 10.1038/s41598-021-82250-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/18/2021] [Indexed: 11/15/2022] Open
Abstract
AlphaB crystallin (αB-crystallin) is a key protein for maintaining the long-term transparency of the eye lens. In the eye lens, αB-crystallin is a "dynamical" oligomer regulated by subunit exchange between the oligomers. To elucidate the unsettled mechanism of subunit exchange in αB-crystallin oligomers, the study was carried out at two different protein concentrations, 28.5 mg/mL (dense sample) and 0.45 mg/mL (dilute sample), through inverse contrast matching small-angle neutron scattering. Interestingly, the exchange rate of the dense sample was the same as that of the dilute sample. From analytical ultracentrifuge measurements, the coexistence of small molecular weight components and oligomers was detected, regardless of the protein concentration. The model proposed that subunit exchange could proceed through the assistance of monomers and other small oligomers; the key mechanism is attaching/detaching monomers and other small oligomers to/from oligomers. Moreover, this model successfully reproduced the experimental results for both dense and dilute solutions. It is concluded that the monomer and other small oligomers attaching/detaching mainly regulates the subunit exchange in αB-crystallin oligomer.
Collapse
Affiliation(s)
- Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan.
| | - Yusuke Sakamaki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Takumi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Kathleen Wood
- Australian Nuclear Science and Technology Organization, Lucas Heights, NSW, Australia
| | - Ken Morishima
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Nobuhiro Sato
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Aya Okuda
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Masahiro Shimizu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Reiko Urade
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Noriko Fujii
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan.
| |
Collapse
|
9
|
Supramolecular tholos-like architecture constituted by archaeal proteins without functional annotation. Sci Rep 2020; 10:1540. [PMID: 32001743 PMCID: PMC6992696 DOI: 10.1038/s41598-020-58371-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/14/2020] [Indexed: 11/08/2022] Open
Abstract
Euryarchaeal genomes encode proteasome-assembling chaperone homologs, PbaA and PbaB, although archaeal proteasome formation is a chaperone-independent process. Homotetrameric PbaB functions as a proteasome activator, while PbaA forms a homopentamer that does not interact with the proteasome. Notably, PbaA forms a complex with PF0014, an archaeal protein without functional annotation. In this study, based on our previous research on PbaA crystal structure, we performed an integrative analysis of the supramolecular structure of the PbaA/PF0014 complex using native mass spectrometry, solution scattering, high-speed atomic force microscopy, and electron microscopy. The results indicated that this highly thermostable complex constitutes ten PbaA and ten PF0014 molecules, which are assembled into a dumbbell-shaped structure. Two PbaA homopentameric rings correspond to the dumbbell plates, with their N-termini located outside of the plates and C-terminal segments left mobile. Furthermore, mutant PbaA lacking the mobile C-terminal segment retained the ability to form a complex with PF0014, allowing 3D modeling of the complex. The complex shows a five-column tholos-like architecture, in which each column comprises homodimeric PF0014, harboring a central cavity, which can potentially accommodate biomacromolecules including proteins. Our findings provide insight into the functional roles of Pba family proteins, offering a novel framework for designing functional protein cages.
Collapse
|
10
|
Sparks S, Temel DB, Rout MP, Cowburn D. Deciphering the "Fuzzy" Interaction of FG Nucleoporins and Transport Factors Using Small-Angle Neutron Scattering. Structure 2018; 26:477-484.e4. [PMID: 29429880 PMCID: PMC5929991 DOI: 10.1016/j.str.2018.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/27/2017] [Accepted: 01/12/2018] [Indexed: 11/16/2022]
Abstract
The largely intrinsically disordered phenylalanine-glycine-rich nucleoporins (FG Nups) underline a selectivity mechanism that enables the rapid translocation of transport factors (TFs) through the nuclear pore complexes (NPCs). Conflicting models of NPC transport have assumed that FG Nups undergo different conformational transitions upon interacting with TFs. To selectively characterize conformational changes in FG Nups induced by TFs we performed small-angle neutron scattering (SANS) with contrast matching. Conformational-ensembles derived from SANS data indicated an increase in the overall size of FG Nups is associated with TF interaction. Moreover, the organization of the FG motif in the interacting state is consistent with prior experimental analyses defining that FG motifs undergo conformational restriction upon interacting with TFs. These results provide structural insights into a highly dynamic interaction and illustrate how functional disorder imparts rapid and selective FG Nup-TF interactions.
Collapse
Affiliation(s)
- Samuel Sparks
- Departments of Biochemistry and of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deniz B Temel
- Departments of Biochemistry and of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, Rockefeller University, New York, NY, USA
| | - David Cowburn
- Departments of Biochemistry and of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
11
|
Structural insights on the dynamics of proteasome formation. Biophys Rev 2017; 10:597-604. [PMID: 29243089 DOI: 10.1007/s12551-017-0381-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022] Open
Abstract
Molecular organization in biological systems comprises elaborately programmed processes involving metastable complex formation of biomolecules. This is exemplified by the formation of the proteasome, which is one of the largest and most complicated biological supramolecular complexes. This biomolecular machinery comprises approximately 70 subunits, including structurally homologous, but functionally distinct, ones, thereby exerting versatile proteolytic functions. In eukaryotes, proteasome formation is non-autonomous and is assisted by assembly chaperones, which transiently associate with assembly intermediates, operating as molecular matchmakers and checkpoints for the correct assembly of proteasome subunits. Accumulated data also suggest that eukaryotic proteasome formation involves scrap-and-build mechanisms. However, unlike the eukaryotic proteasome subunits, the archaeal subunits show little structural divergence and spontaneously assemble into functional machinery. Nevertheless, the archaeal genomes encode homologs of eukaryotic proteasome assembly chaperones. Recent structural and functional studies of these proteins have advanced our understanding of the evolution of molecular mechanisms involved in proteasome biogenesis. This knowledge, in turn, provides a guiding principle in designing molecular machineries using protein engineering approaches and de novo synthesis of artificial molecular systems.
Collapse
|
12
|
Bernadó P, Shimizu N, Zaccai G, Kamikubo H, Sugiyama M. Solution scattering approaches to dynamical ordering in biomolecular systems. Biochim Biophys Acta Gen Subj 2017; 1862:253-274. [PMID: 29107147 DOI: 10.1016/j.bbagen.2017.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 01/09/2023]
Abstract
Clarification of solution structure and its modulation in proteins and protein complexes is crucially important to understand dynamical ordering in macromolecular systems. Small-angle x-ray scattering (SAXS) and small-angle neutron scattering (SANS) are among the most powerful techniques to derive structural information. Recent progress in sample preparation, instruments and software analysis is opening up a new era for small-angle scattering. In this review, recent progress and trends of SAXS and SANS are introduced from the point of view of instrumentation and analysis, touching on general features and standard methods of small-angle scattering. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Pau Bernadó
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Nobutaka Shimizu
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Giuseppe Zaccai
- Institut Laue Langevin, Institut de Biologie Structurale, CNRS, CNRS, UGA, Grenoble, France
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Masaaki Sugiyama
- Research Reactor Institute, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan..
| |
Collapse
|
13
|
Characterization of conformational deformation-coupled interaction between immunoglobulin G1 Fc glycoprotein and a low-affinity Fcγ receptor by deuteration-assisted small-angle neutron scattering. Biochem Biophys Rep 2017; 12:1-4. [PMID: 28955785 PMCID: PMC5613214 DOI: 10.1016/j.bbrep.2017.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/20/2017] [Accepted: 08/10/2017] [Indexed: 11/22/2022] Open
Abstract
A recently developed integrative approach combining varied types of experimental data has been successfully applied to three-dimensional modelling of larger biomacromolecular complexes. Deuteration-assisted small-angle neutron scattering (SANS) plays a unique role in this approach by making it possible to observe selected components in the complex. It enables integrative modelling of biomolecular complexes based on building-block structures typically provided by X-ray crystallography. In this integrative approach, it is important to be aware of the flexible properties of the individual building blocks. Here we examine the ability of SANS to detect a subtle conformational change of a multidomain protein using the Fc portion of human immunoglobulin G (IgG) interacting with a soluble form of the low-affinity Fcγ receptor IIIb (sFcγRIIIb) as a model system. The IgG-Fc glycoprotein was subjected to SANS in the absence and presence of 75%-deuterated sFcγRIIIb, which was matched out in D2O solution. This inverse contrast-matching technique enabled selective observation of SANS from IgG-Fc, thereby detecting its subtle structural deformation induced by the receptor binding. The SANS data were successfully interpreted by considering previously reported crystallographic data and an equilibrium between free and sFcγRIIIb-bound forms. Our SANS data thus demonstrate the applicability of SANS in the integrative approach dealing with biomacromolecular complexes composed of weakly associated building blocks with conformational plasticity. IgG-Fc glycoprotein was structurally characterized by small-angle neutron scattering. Fc was selectively observed under equilibrium between free and receptor-bound forms. Receptor-induced conformational change of Fc was successfully detected.
Collapse
|
14
|
Sugiyama M, Yagi H, Ishii K, Porcar L, Martel A, Oyama K, Noda M, Yunoki Y, Murakami R, Inoue R, Sato N, Oba Y, Terauchi K, Uchiyama S, Kato K. Structural characterization of the circadian clock protein complex composed of KaiB and KaiC by inverse contrast-matching small-angle neutron scattering. Sci Rep 2016; 6:35567. [PMID: 27752127 PMCID: PMC5067715 DOI: 10.1038/srep35567] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/30/2016] [Indexed: 11/26/2022] Open
Abstract
The molecular machinery of the cyanobacterial circadian clock consists of three proteins: KaiA, KaiB, and KaiC. Through interactions among the three Kai proteins, the phosphorylation states of KaiC generate circadian oscillations in vitro in the presence of ATP. Here, we characterized the complex formation between KaiB and KaiC using a phospho-mimicking mutant of KaiC, which had an aspartate substitution at the Ser431 phosphorylation site and exhibited optimal binding to KaiB. Mass-spectrometric titration data showed that the proteins formed a complex exclusively in a 6:6 stoichiometry, indicating that KaiB bound to the KaiC hexamer with strong positive cooperativity. The inverse contrast-matching technique of small-angle neutron scattering enabled selective observation of KaiB in complex with the KaiC mutant with partial deuteration. It revealed a disk-shaped arrangement of the KaiB subunits on the outer surface of the KaiC C1 ring, which also serves as the interaction site for SasA, a histidine kinase that operates as a clock-output protein in the regulation of circadian transcription. These data suggest that cooperatively binding KaiB competes with SasA with respect to interaction with KaiC, thereby promoting the synergistic release of this clock-output protein from the circadian oscillator complex.
Collapse
Affiliation(s)
- Masaaki Sugiyama
- Research Reactor Institute, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kentaro Ishii
- Okazaki Institute for Integrative Bioscience and 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Lionel Porcar
- Institut Laue-Langevin, 71, Avenue des Martyrs, Grenoble 38042, France
| | - Anne Martel
- Institut Laue-Langevin, 71, Avenue des Martyrs, Grenoble 38042, France
| | - Katsuaki Oyama
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Masanori Noda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuhiro Yunoki
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Reiko Murakami
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Rintaro Inoue
- Research Reactor Institute, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Nobuhiro Sato
- Research Reactor Institute, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Yojiro Oba
- Research Reactor Institute, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Kazuki Terauchi
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Susumu Uchiyama
- Okazaki Institute for Integrative Bioscience and 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.,Okazaki Institute for Integrative Bioscience and 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
15
|
Yagi-Utsumi M, Satoh T, Kato K. Structural basis of redox-dependent substrate binding of protein disulfide isomerase. Sci Rep 2015; 5:13909. [PMID: 26350503 PMCID: PMC4563560 DOI: 10.1038/srep13909] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/13/2015] [Indexed: 01/09/2023] Open
Abstract
Protein disulfide isomerase (PDI) is a multidomain enzyme, operating as an essential folding catalyst, in which the b′ and a′ domains provide substrate binding sites and undergo an open–closed domain rearrangement depending on the redox states of the a′ domain. Despite the long research history of this enzyme, three-dimensional structural data remain unavailable for its ligand-binding mode. Here we characterize PDI substrate recognition using α-synuclein (αSN) as the model ligand. Our nuclear magnetic resonance (NMR) data revealed that the substrate-binding domains of PDI captured the αSN segment Val37–Val40 only in the oxidized form. Furthermore, we determined the crystal structure of an oxidized form of the b′–a′ domains in complex with an undecapeptide corresponding to this segment. The peptide-binding mode observed in the crystal structure with NMR validation, was characterized by hydrophobic interactions on the b′ domain in an open conformation. Comparison with the previously reported crystal structure indicates that the a′ domain partially masks the binding surface of the b′ domain, causing steric hindrance against the peptide in the reduced form of the b′–a′ domains that exhibits a closed conformation. These findings provide a structural basis for the mechanism underlying the redox-dependent substrate binding of PDI.
Collapse
Affiliation(s)
- Maho Yagi-Utsumi
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.,JST, PRESTO, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Koichi Kato
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| |
Collapse
|
16
|
Anunciado D, Rai DK, Qian S, Urban V, O'Neill H. Small-angle neutron scattering reveals the assembly of alpha-synuclein in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1881-1889. [PMID: 26321599 DOI: 10.1016/j.bbapap.2015.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/12/2015] [Accepted: 08/25/2015] [Indexed: 12/15/2022]
Abstract
The aggregation of α-synuclein (asyn), an intrinsically disordered protein (IDP), is a hallmark in Parkinson's disease (PD). We investigated the conformational changes that asyn undergoes in the presence of membrane and membrane mimetics using small-angle neutron scattering (SANS). In solution, asyn is monomeric and unfolded assuming an ensemble of conformers spanning extended and compact conformations. Using the contrast variation technique and SANS, the protein scattering signal in the membrane-protein complexes is selectively highlighted in order to monitor its conformational changes in this environment. We showed that in the presence of phospholipid membranes asyn transitions from a monodisperse state to aggregated structures with sizes ranging from 200 to 900Å coexisting with the monomeric species. Detailed SANS data analysis revealed that asyn aggregates have a hierarchical organization in which clusters of smaller asyn aggregates assemble to form the larger structures. This study provides new insight into the mechanism of asyn aggregation. We propose an aggregation mechanism in which stable asyn aggregates seed the aggregation process and hence the hierarchical assembly of structures. Our findings demonstrate that membrane-induced conformational changes in asyn lead to its heterogeneous aggregation which could be physiologically relevant in its function or in the diseased state.
Collapse
Affiliation(s)
- Divina Anunciado
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - Durgesh K Rai
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - Shuo Qian
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - Volker Urban
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - Hugh O'Neill
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| |
Collapse
|
17
|
Distinct features of the histone core structure in nucleosomes containing the histone H2A.B variant. Biophys J 2014; 106:2206-13. [PMID: 24853749 DOI: 10.1016/j.bpj.2014.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/23/2014] [Accepted: 04/01/2014] [Indexed: 11/24/2022] Open
Abstract
Nucleosomes containing a human histone variant, H2A.B, in an aqueous solution were analyzed by small-angle neutron scattering utilizing a contrast variation technique. Comparisons with the canonical H2A nucleosome structure revealed that the DNA termini of the H2A.B nucleosome are detached from the histone core surface, and flexibly expanded toward the solvent. In contrast, the histone tails are compacted in H2A.B nucleosomes compared to those in canonical H2A nucleosomes, suggesting that they bind to the surface of the histone core and/or DNA. Therefore, the histone tail dynamics may function to regulate the flexibility of the DNA termini in the nucleosomes.
Collapse
|