1
|
Choi M, Dahal E, Badano A. Feasibility of imaging amyloid in the brain using small-angle x-ray scattering. Biomed Phys Eng Express 2020; 7. [PMID: 34037540 DOI: 10.1088/2057-1976/ab501c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/22/2019] [Indexed: 11/11/2022]
Abstract
Small-angle x-ray scattering (SAXS) imaging may have the potential to imageβ-amyloid plaquesin vivoin the brain without tracers for assessment of Alzheimer's disease (AD). We use a laboratory SAXS system for planar imaging of AD model and control mouse brains slices to detect regions with high density of amyloid plaques. These regions were validated with histology methods. Using Monte Carlo techniques, we simulate SAXS computed tomography (SAXS-CT) system to study the potential of selectively differentiating amyloid targets in mouse and human head phantoms with detailed anatomy. We found contrast between amyloid and brain tissue at smallq(below 0.8 nm-1) in the neocortex region of the transgenic brain slices as supported by histology. We observed similar behavior through planar SAXS imaging of an amyloid-like fibril deposit with a 0.8 mm diameter at a known location on a wild type mouse brain. In our SAXS-CT simulations, we found that 33-keV x rays provide increase plaque visibility in the mouse head for targets of at least 0.1 mm in diameter, while in the human head, 70-keV x rays were capable of detecting plaques as small as 2 mm. To increase radiation efficiency, we used a weighted-sum image visualization approach allowing the dose deposited by 70-keV x rays per SAXS-CT slice of the human head to be reduced by a factor of 10 to 71 mGy for gray matter and 63 mGy for white matter. The findings suggest that a dedicated SAXS-CT system forin vivoamyloid imaging in small animals and humans can be successfully developed with further system optimization to detect regions with amyloid plaques in the brain with a safe level of radiation dose.
Collapse
Affiliation(s)
- Mina Choi
- Center for Devices and Radiological Health, FDA, Silver Spring, MD, United States of America.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States of America
| | - Eshan Dahal
- Center for Devices and Radiological Health, FDA, Silver Spring, MD, United States of America.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States of America
| | - Aldo Badano
- Center for Devices and Radiological Health, FDA, Silver Spring, MD, United States of America.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States of America
| |
Collapse
|
2
|
Dahal E, Ghammraoui B, Ye M, Smith JC, Badano A. Label-free X-ray estimation of brain amyloid burden. Sci Rep 2020; 10:20505. [PMID: 33239703 PMCID: PMC7689528 DOI: 10.1038/s41598-020-77554-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/12/2020] [Indexed: 12/02/2022] Open
Abstract
Amyloid plaque deposits in the brain are indicative of Alzheimer’s and other diseases. Measurements of brain amyloid burden in small animals require laborious post-mortem histological analysis or resource-intensive, contrast-enhanced imaging techniques. We describe a label-free method based on spectral small-angle X-ray scattering with a polychromatic beam for in vivo estimation of brain amyloid burden. Our findings comparing 5XFAD versus wild-type mice correlate well with histology, showing promise for a fast and practical in vivo technique.
Collapse
Affiliation(s)
- Eshan Dahal
- Division of Imaging, Diagnostics and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Bahaa Ghammraoui
- Division of Imaging, Diagnostics and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Meijun Ye
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - J Carson Smith
- School of Public Health, University of Maryland, College Park, MD, 20742, USA
| | - Aldo Badano
- Division of Imaging, Diagnostics and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA. .,Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
3
|
Dahal E, Ghammraoui B, Badano A. Feasibility of a label-free X-ray method to estimate brain amyloid load in small animals. J Neurosci Methods 2020; 343:108822. [PMID: 32574641 DOI: 10.1016/j.jneumeth.2020.108822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Amyloid plaque in the brain is associated with a wide range of neurodegenerative diseases such as Alzheimer's and Parkinson's and defined as aggregates of amyloid fibrils rich in β-sheet structures. NEW METHOD We report a label-free method based on small-angle X-ray scattering (SAXS) to estimate amyloid load in an intact mouse head with skull. The method is based on recording and analyzing the X rays elastically scattered from the β-sheets of amyloid plaques in a mouse head at angles smaller than 10° and energies between 30 and 45 keV. The method is demonstrated by acquiring the spectral SAXS data of an amyloid model and an excised head from a wild-type mouse for 600 s. RESULTS We captured the distinct scattering peaks of the amyloid plaques at momentum transfer (q) of 6 and 13 nm-1 associated with β-sheet structure. We first show linear correlation between the mass fraction of the amyloid target and the area under the peak (AUP) of the scattering curve. We report results for estimating amyloid load in a fixed mouse head by recovering the characteristic scattering signal from the amyloid target situated at various locations. The coefficient of variation in the amyloid load estimate is found to be less than 10%. COMPARISON WITH EXISTING METHODS There are no previously described label-free X-ray methods for the estimation of amyloid load in an intact head. CONCLUSIONS We demonstrated the feasibility of a label-free method based on SAXS to potentially estimate brain amyloid in small animals.
Collapse
Affiliation(s)
- Eshan Dahal
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Bahaa Ghammraoui
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Aldo Badano
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
4
|
Choi M, Ghammraoui B, Badano A. Small-angle X-ray scattering characteristics of mouse brain: Planar imaging measurements and tomographic imaging simulations. PLoS One 2017; 12:e0186451. [PMID: 29088259 PMCID: PMC5663376 DOI: 10.1371/journal.pone.0186451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/02/2017] [Indexed: 11/18/2022] Open
Abstract
Small-angle x-ray scattering (SAXS) imaging can differentiate tissue types based on their nanoscale molecular structure. However, characterization of the coherent scattering cross-section profile of relevant tissues is needed to optimally design SAXS imaging techniques for a variety of biomedical applications. Reported measured nervous tissue x-ray scattering cross sections under a synchrotron source have had limited agreement. We report a set of x-ray cross-section measurements obtained from planar SAXS imaging of 1 mm thick mouse brain (APP/PS1 wild-type) coronal slices using an 8 keV laboratory x-ray source. Two characteristic peaks were found at 0.96 and 1.60 nm-1 attributed to myelin. The peak intensities varied by location in the slice. We found that regions of gray matter, white matter, and corpus callosum could be segmented by their increasing intensities of myelin peaks respectively. Measured small-angle x-ray scattering cross sections were then used to define brain tissue scattering properties in a GPU-accelerated Monte Carlo simulation of SAXS computed tomography (CT) using a higher monochromatic x-ray energy (20 keV) to study design trade-offs for noninvasive in vivo SAXS imaging on a small-animal head including radiation dose, signal-to-noise ratio (SNR), and the effect of skull presence on the previous two metrics. Simulation results show the estimated total dose to the mouse head for a single SAXS-CT slice was 149.4 mGy. The pixel SNR was approximately 30.8 for white matter material whether or not a skull was present. In this early-stage proof-of-principle work, we have demonstrated our brain cross-section data and simulation tools can be used to assess optimal instrument parameters for dedicated small-animal SAXS-CT prototypes.
Collapse
Affiliation(s)
- Mina Choi
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, United States of America
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, CDRH/USFDA, Silver Spring, Maryland 20993, United States of America
| | - Bahaa Ghammraoui
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, CDRH/USFDA, Silver Spring, Maryland 20993, United States of America
| | - Aldo Badano
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, United States of America
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, CDRH/USFDA, Silver Spring, Maryland 20993, United States of America
| |
Collapse
|
5
|
Dahal E, Choi M, Alam N, Bhirde AA, Beaucage SL, Badano A. Structural evaluation of an amyloid fibril model using small-angle x-ray scattering. Phys Biol 2017; 14:046001. [DOI: 10.1088/1478-3975/aa776a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Alam N, Choi M, Ghammraoui B, Dahal E, Badano A. Small-angle x-ray scattering cross-section measurements of imaging materials. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa6720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|