1
|
Shelley KL, Garman EF. Identifying and avoiding radiation damage in macromolecular crystallography. Acta Crystallogr D Struct Biol 2024; 80:314-327. [PMID: 38700059 PMCID: PMC11066884 DOI: 10.1107/s2059798324003243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Radiation damage remains one of the major impediments to accurate structure solution in macromolecular crystallography. The artefacts of radiation damage can manifest as structural changes that result in incorrect biological interpretations being drawn from a model, they can reduce the resolution to which data can be collected and they can even prevent structure solution entirely. In this article, we discuss how to identify and mitigate against the effects of radiation damage at each stage in the macromolecular crystal structure-solution pipeline.
Collapse
Affiliation(s)
- Kathryn L. Shelley
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, United Kingdom
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
2
|
Carugo O. Location of S-nitrosylated cysteines in protein three-dimensional structures. Proteins 2024; 92:464-473. [PMID: 37941304 DOI: 10.1002/prot.26629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
Although S-nitrosylation of cysteines is a common protein posttranslational modification, little is known about its three-dimensional structural features. This paper describes a systematic survey of the data available in the Protein Data Bank. Several interesting observations could be made. (1) As a result of radiation damage, S-nitrosylated cysteines (Snc) are frequently reduced, at least partially. (2) S-nitrosylation may be a protection against irreversible thiol oxidation; because the NO group of Snc is relatively accessible to the solvent, it may act as a cork to protect the sulfur atoms of cysteines from oxidation by molecular oxygen to sulfenic, sulfinic, and sulfonic acid; moreover, Snc are frequently found at the start or end of helices and strands and this might shield secondary structural elements from unfolding.
Collapse
Affiliation(s)
- Oliviero Carugo
- Department of Chemistry, University of Pavia, Pavia, Italy
- Department of Structural and Computational Biology, Max Perutz Labs University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Pražnikar J. Using graphlet degree vectors to predict atomic displacement parameters in protein structures. Acta Crystallogr D Struct Biol 2023; 79:1109-1119. [PMID: 37987168 PMCID: PMC10833351 DOI: 10.1107/s2059798323009142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
In structural biology, atomic displacement parameters, commonly used in the form of B values, describe uncertainties in atomic positions. Their distribution over the structure can provide hints on local structural reliability and mobility. A spatial macromolecular model can be represented by a graph whose nodes are atoms and whose edges correspond to all interatomic contacts within a certain distance. Small connected subgraphs, called graphlets, provide information about the wiring of a particular atom. The multiple linear regression approach based on this information aims to predict a distribution of values of isotropic atomic displacement parameters (B values) within a protein structure, given the atomic coordinates and molecular packing. By modeling the dynamic component of atomic uncertainties, this method allows the B values obtained from experimental crystallographic or cryo-electron microscopy studies to be reproduced relatively well.
Collapse
Affiliation(s)
- Jure Pražnikar
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, Koper, Slovenia
- Department of Biochemistry, Molecular and Structural Biology, Institute Jožef Stefan, Jamova 39, Ljubljana, Slovenia
| |
Collapse
|
4
|
Agirre J, Atanasova M, Bagdonas H, Ballard CB, Baslé A, Beilsten-Edmands J, Borges RJ, Brown DG, Burgos-Mármol JJ, Berrisford JM, Bond PS, Caballero I, Catapano L, Chojnowski G, Cook AG, Cowtan KD, Croll TI, Debreczeni JÉ, Devenish NE, Dodson EJ, Drevon TR, Emsley P, Evans G, Evans PR, Fando M, Foadi J, Fuentes-Montero L, Garman EF, Gerstel M, Gildea RJ, Hatti K, Hekkelman ML, Heuser P, Hoh SW, Hough MA, Jenkins HT, Jiménez E, Joosten RP, Keegan RM, Keep N, Krissinel EB, Kolenko P, Kovalevskiy O, Lamzin VS, Lawson DM, Lebedev AA, Leslie AGW, Lohkamp B, Long F, Malý M, McCoy AJ, McNicholas SJ, Medina A, Millán C, Murray JW, Murshudov GN, Nicholls RA, Noble MEM, Oeffner R, Pannu NS, Parkhurst JM, Pearce N, Pereira J, Perrakis A, Powell HR, Read RJ, Rigden DJ, Rochira W, Sammito M, Sánchez Rodríguez F, Sheldrick GM, Shelley KL, Simkovic F, Simpkin AJ, Skubak P, Sobolev E, Steiner RA, Stevenson K, Tews I, Thomas JMH, Thorn A, Valls JT, Uski V, Usón I, Vagin A, Velankar S, Vollmar M, Walden H, Waterman D, Wilson KS, Winn MD, Winter G, Wojdyr M, Yamashita K. The CCP4 suite: integrative software for macromolecular crystallography. Acta Crystallogr D Struct Biol 2023; 79:449-461. [PMID: 37259835 PMCID: PMC10233625 DOI: 10.1107/s2059798323003595] [Citation(s) in RCA: 195] [Impact Index Per Article: 195.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 06/02/2023] Open
Abstract
The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.
Collapse
Affiliation(s)
- Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Mihaela Atanasova
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Haroldas Bagdonas
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Charles B. Ballard
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Arnaud Baslé
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - James Beilsten-Edmands
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Rafael J. Borges
- The Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - David G. Brown
- Laboratoires Servier SAS Institut de Recherches, Croissy-sur-Seine, France
| | - J. Javier Burgos-Mármol
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - John M. Berrisford
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Paul S. Bond
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Iracema Caballero
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Lucrezia Catapano
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
| | - Grzegorz Chojnowski
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany
| | - Atlanta G. Cook
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King’s Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Kevin D. Cowtan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Tristan I. Croll
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
- Altos Labs, Portway Building, Granta Park, Great Abington, Cambridge CB21 6GP, United Kingdom
| | - Judit É. Debreczeni
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, United Kingdom
| | - Nicholas E. Devenish
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Eleanor J. Dodson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Tarik R. Drevon
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Paul Emsley
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0QS, United Kingdom
| | - Phil R. Evans
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Maria Fando
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - James Foadi
- Department of Mathematical Sciences, University of Bath, Bath, United Kingdom
| | - Luis Fuentes-Montero
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom
| | - Markus Gerstel
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Richard J. Gildea
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Kaushik Hatti
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Maarten L. Hekkelman
- Oncode Institute and Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Philipp Heuser
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Soon Wen Hoh
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Michael A. Hough
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Huw T. Jenkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Elisabet Jiménez
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Robbie P. Joosten
- Oncode Institute and Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ronan M. Keegan
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Nicholas Keep
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Eugene B. Krissinel
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Petr Kolenko
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 55, 252 50 Vestec, Czech Republic
| | - Oleg Kovalevskiy
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Victor S. Lamzin
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany
| | - David M. Lawson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Andrey A. Lebedev
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Andrew G. W. Leslie
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Bernhard Lohkamp
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Fei Long
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Martin Malý
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 55, 252 50 Vestec, Czech Republic
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Airlie J. McCoy
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Stuart J. McNicholas
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Ana Medina
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Claudia Millán
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - James W. Murray
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Garib N. Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Robert A. Nicholls
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Martin E. M. Noble
- Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Robert Oeffner
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Navraj S. Pannu
- Department of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - James M. Parkhurst
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0QS, United Kingdom
| | - Nicholas Pearce
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Joana Pereira
- Biozentrum and SIB Swiss Institute of Bioinformatics, University of Basel, 4056 Basel, Switzerland
| | - Anastassis Perrakis
- Oncode Institute and Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Harold R. Powell
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Randy J. Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Daniel J. Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - William Rochira
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Massimo Sammito
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
- Discovery Centre, Biologics Engineering, AstraZeneca, Biomedical Campus, 1 Francis Crick Avenue, Trumpington, Cambridge CB2 0AA, United Kingdom
| | - Filomeno Sánchez Rodríguez
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - George M. Sheldrick
- Department of Structural Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Kathryn L. Shelley
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Felix Simkovic
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Adam J. Simpkin
- Laboratoires Servier SAS Institut de Recherches, Croissy-sur-Seine, France
| | - Pavol Skubak
- Department of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Egor Sobolev
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Roberto A. Steiner
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
- Department of Biomedical Sciences, University of Padova, Italy
| | - Kyle Stevenson
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Ivo Tews
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Jens M. H. Thomas
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Andrea Thorn
- Institute for Nanostructure and Solid State Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Josep Triviño Valls
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Ville Uski
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Isabel Usón
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08003 Barcelona, Spain
| | - Alexei Vagin
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Melanie Vollmar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Helen Walden
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David Waterman
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Keith S. Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Martyn D. Winn
- Scientific Computing Department, Science and Technology Facilities Council, Didcot OX11 0FA, United Kingdom
| | - Graeme Winter
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Marcin Wojdyr
- Global Phasing Limited (United Kingdom), Sheraton House, Castle Park, Cambridge CB3 0AX, United Kingdom
| | - Keitaro Yamashita
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
5
|
Gul M, Ayan E, Destan E, Johnson JA, Shafiei A, Kepceoğlu A, Yilmaz M, Ertem FB, Yapici İ, Tosun B, Baldir N, Tokay N, Nergiz Z, Karakadioğlu G, Paydos SS, Kulakman C, Ferah CK, Güven Ö, Atalay N, Akcan EK, Cetinok H, Arslan NE, Şabanoğlu K, Aşci B, Tavli S, Gümüsboğa H, Altuntaş S, Otsuka M, Fujita M, Teki N Ş, Çi Ftçi H, Durdaği S, Karaca E, Kaplan Türköz B, Kabasakal BV, Kati A, DeMi Rci H. Rapid and efficient ambient temperature X-ray crystal structure determination at Turkish Light Source. Sci Rep 2023; 13:8123. [PMID: 37208392 PMCID: PMC10198979 DOI: 10.1038/s41598-023-33989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
High-resolution biomacromolecular structure determination is essential to better understand protein function and dynamics. Serial crystallography is an emerging structural biology technique which has fundamental limitations due to either sample volume requirements or immediate access to the competitive X-ray beamtime. Obtaining a high volume of well-diffracting, sufficient-size crystals while mitigating radiation damage remains a critical bottleneck of serial crystallography. As an alternative, we introduce the plate-reader module adapted for using a 72-well Terasaki plate for biomacromolecule structure determination at a convenience of a home X-ray source. We also present the first ambient temperature lysozyme structure determined at the Turkish light source (Turkish DeLight). The complete dataset was collected in 18.5 min with resolution extending to 2.39 Å and 100% completeness. Combined with our previous cryogenic structure (PDB ID: 7Y6A), the ambient temperature structure provides invaluable information about the structural dynamics of the lysozyme. Turkish DeLight provides robust and rapid ambient temperature biomacromolecular structure determination with limited radiation damage.
Collapse
Affiliation(s)
- Mehmet Gul
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
| | - Esra Ayan
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
| | - Ebru Destan
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
| | - J Austin Johnson
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
| | - Alaleh Shafiei
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
| | - Abdullah Kepceoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Istanbul, Türkiye
| | - Merve Yilmaz
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
| | - Fatma Betül Ertem
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
| | - İlkin Yapici
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
| | - Bilge Tosun
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
| | - Nilüfer Baldir
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
| | - Nurettin Tokay
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
| | - Zeliş Nergiz
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
- Koç University Isbank Center for Infectious Diseases (KUISCID), Koç University, Istanbul, Türkiye
| | - Gözde Karakadioğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
| | - Seyide Seda Paydos
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
| | - Cahine Kulakman
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
| | - Cengiz Kaan Ferah
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
| | - Ömür Güven
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
| | - Necati Atalay
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Türkiye
- Experimental Medicine Application & Research Center, University of Health Sciences Türkiye, Istanbul, Türkiye
| | - Enver Kamil Akcan
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Türkiye
| | - Haluk Cetinok
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
| | - Nazlı Eylül Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Arel University, Istanbul, Türkiye
| | - Kardelen Şabanoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yıldız Technical University, Istanbul, Türkiye
| | - Bengisu Aşci
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
| | - Serra Tavli
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
| | - Helin Gümüsboğa
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
| | - Sevde Altuntaş
- Experimental Medicine Application & Research Center, University of Health Sciences Türkiye, Istanbul, Türkiye
- Department of Tissue Engineering, Hamidiye Institute of Health Sciences, University of Health Sciences Türkiye, Istanbul, Türkiye
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Drug Discovery, Science Farm Ltd., Kumamoto, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Şaban Teki N
- Experimental Medicine Application & Research Center, University of Health Sciences Türkiye, Istanbul, Türkiye
- The Scientific and Technological Research Council of Türkiye (TÜBİTAK) Marmara Research Center (MAM), Life Sciences, Kocaeli, Türkiye
- Department of Basic Medical Sciences, Division of Medical Biology, Faculty of Medicine, University of Health Sciences Türkiye, Istanbul, Türkiye
| | - Halilibrahim Çi Ftçi
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Drug Discovery, Science Farm Ltd., Kumamoto, Japan
| | - Serdar Durdaği
- Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Türkiye
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | - Burcu Kaplan Türköz
- Department of Food Engineering, Faculty of Engineering, Ege University, Izmir, Türkiye
| | - Burak Veli Kabasakal
- Turkish Accelerator and Radiation Laboratory (TARLA), Ankara University, Ankara, Türkiye
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Ahmet Kati
- Experimental Medicine Application & Research Center, University of Health Sciences Türkiye, Istanbul, Türkiye
- Department of Biotechnology, Hamidiye Institute of Health Sciences, University of Health Sciences Türkiye, Istanbul, Türkiye
| | - Hasan DeMi Rci
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye.
- Koç University Isbank Center for Infectious Diseases (KUISCID), Koç University, Istanbul, Türkiye.
- SLAC National Laboratory, Stanford PULSE Institute, Menlo Park, CA, USA.
| |
Collapse
|
6
|
Martin-Garcia JM, Botha S, Hu H, Jernigan R, Castellví A, Lisova S, Gil F, Calisto B, Crespo I, Roy-Chowdhury S, Grieco A, Ketawala G, Weierstall U, Spence J, Fromme P, Zatsepin N, Boer DR, Carpena X. Serial macromolecular crystallography at ALBA Synchrotron Light Source. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:896-907. [PMID: 35511023 PMCID: PMC9070724 DOI: 10.1107/s1600577522002508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The increase in successful adaptations of serial crystallography at synchrotron radiation sources continues. To date, the number of serial synchrotron crystallography (SSX) experiments has grown exponentially, with over 40 experiments reported so far. In this work, we report the first SSX experiments with viscous jets conducted at ALBA beamline BL13-XALOC. Small crystals (15-30 µm) of five soluble proteins (lysozyme, proteinase K, phycocyanin, insulin and α-spectrin-SH3 domain) were suspended in lipidic cubic phase (LCP) and delivered to the X-ray beam with a high-viscosity injector developed at Arizona State University. Complete data sets were collected from all proteins and their high-resolution structures determined. The high quality of the diffraction data collected from all five samples, and the lack of specific radiation damage in the structures obtained in this study, confirm that the current capabilities at the beamline enables atomic resolution determination of protein structures from microcrystals as small as 15 µm using viscous jets at room temperature. Thus, BL13-XALOC can provide a feasible alternative to X-ray free-electron lasers when determining snapshots of macromolecular structures.
Collapse
Affiliation(s)
- Jose M. Martin-Garcia
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano, Spanish National Research Council (CSIC), Madrid, Spain
| | - Sabine Botha
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Hao Hu
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Rebecca Jernigan
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Albert Castellví
- Molecular Biology Institute of Barcelona, CSIC, Barcelona, Spain
| | - Stella Lisova
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Fernando Gil
- ALBA Synchrotron, Cerdanyola del Vallès, Barcelona, Spain
| | | | - Isidro Crespo
- ALBA Synchrotron, Cerdanyola del Vallès, Barcelona, Spain
| | - Shatabdi Roy-Chowdhury
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Alice Grieco
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano, Spanish National Research Council (CSIC), Madrid, Spain
| | - Gihan Ketawala
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Uwe Weierstall
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - John Spence
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Petra Fromme
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Nadia Zatsepin
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Physics, Arizona State University, Tempe, AZ, USA
- ARC Centre of Excellence in Advance Molecular Physics, La Trobe Institute for Molecular ScienceImaging, Department of Chemistry and Physics, La Trobe University, Melbourne, Australia
| | | | - Xavi Carpena
- ALBA Synchrotron, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
7
|
Shelley KL, Garman EF. Quantifying and comparing radiation damage in the Protein Data Bank. Nat Commun 2022; 13:1314. [PMID: 35288575 PMCID: PMC8921271 DOI: 10.1038/s41467-022-28934-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/18/2022] [Indexed: 11/09/2022] Open
Abstract
Radiation damage remains one of the major bottlenecks to accurate structure solution in protein crystallography. It can induce structural and chemical changes in protein crystals, and is hence an important consideration when assessing the quality and biological veracity of crystal structures in repositories like the Protein Data Bank (PDB). However, detection of radiation damage artefacts has traditionally proved very challenging. To address this, here we introduce the Bnet metric. Bnet summarises in a single value the extent of damage suffered by a crystal structure by comparing the B-factor values of damage-prone and non-damage-prone atoms in a similar local environment. After validating that Bnet successfully detects damage in 23 different crystal structures previously characterised as damaged, we calculate Bnet values for 93,978 PDB crystal structures. Our metric highlights a range of damage features, many of which would remain unidentified by the other summary statistics typically calculated for PDB structures.
Collapse
Affiliation(s)
- Kathryn L Shelley
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom.
| | - Elspeth F Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
8
|
Carugo O. B-factor accuracy in protein crystal structures. Acta Crystallogr D Struct Biol 2022; 78:69-74. [PMID: 34981763 PMCID: PMC8725162 DOI: 10.1107/s2059798321011736] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/04/2021] [Indexed: 11/10/2022] Open
Abstract
The accuracy of B factors in protein crystal structures has been determined by comparing the same atoms in numerous, independent crystal structures of Gallus gallus lysozyme. Both B-factor absolute differences and normal probability plots indicate that the estimated B-factor errors are quite large, close to 9 Å2 in ambient-temperature structures and to 6 Å2 in low-temperature structures, and surprisingly are comparable to values estimated two decades ago. It is well known that B factors are not due to local movements only but reflect several, additional factors from crystal defects, large-scale disorder, diffraction data quality etc. It therefore remains essential to normalize B factors when comparing different crystal structures, although it has clearly been shown that they provide useful information about protein dynamics. Improved, quantitative analyses of raw B factors require novel experimental and computational tools that are able to disaggregate local movements from other features and properties that affect B factors.
Collapse
Affiliation(s)
- Oliviero Carugo
- Department of Chemistry, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy
- Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| |
Collapse
|
9
|
Carugo O. Uses and Abuses of the Atomic Displacement Parameters in Structural Biology. Methods Mol Biol 2022; 2449:281-298. [PMID: 35507268 DOI: 10.1007/978-1-0716-2095-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
B-factors determined with X-ray crystallographic analyses are commonly used to estimate the flexibility degree of atoms, residues, and molecular moieties in biological macromolecules. In this chapter, the most recent studies and applications of B-factors in protein engineering and structural biology are briefly summarized. Particular emphasis is given to the limitations in using B-factors, in order to prevent inappropriate applications. It is eventually predicted that future applications will involve anisotropically refined B-factors, deep learning, and data produced by cryo-EM.
Collapse
|
10
|
Parkhurst JM, Dumoux M, Basham M, Clare D, Siebert CA, Varslot T, Kirkland A, Naismith JH, Evans G. Parakeet: a digital twin software pipeline to assess the impact of experimental parameters on tomographic reconstructions for cryo-electron tomography. Open Biol 2021; 11:210160. [PMID: 34699732 PMCID: PMC8548082 DOI: 10.1098/rsob.210160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In cryo-electron tomography (cryo-ET) of biological samples, the quality of tomographic reconstructions can vary depending on the transmission electron microscope (TEM) instrument and data acquisition parameters. In this paper, we present Parakeet, a 'digital twin' software pipeline for the assessment of the impact of various TEM experiment parameters on the quality of three-dimensional tomographic reconstructions. The Parakeet digital twin is a digital model that can be used to optimize the performance and utilization of a physical instrument to enable in silico optimization of sample geometries, data acquisition schemes and instrument parameters. The digital twin performs virtual sample generation, TEM image simulation, and tilt series reconstruction and analysis within a convenient software framework. As well as being able to produce physically realistic simulated cryo-ET datasets to aid the development of tomographic reconstruction and subtomogram averaging programs, Parakeet aims to enable convenient assessment of the effects of different microscope parameters and data acquisition parameters on reconstruction quality. To illustrate the use of the software, we present the example of a quantitative analysis of missing wedge artefacts on simulated planar and cylindrical biological samples and discuss how data collection parameters can be modified for cylindrical samples where a full 180° tilt range might be measured.
Collapse
Affiliation(s)
- James M. Parkhurst
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK,Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Maud Dumoux
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Mark Basham
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK,Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Daniel Clare
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - C. Alistair Siebert
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Trond Varslot
- Thermo Fisher Scientific, Vlastimila Pecha, Brno, Czech Republic
| | - Angus Kirkland
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK,Electron Physical Science Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK,Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
| | - James H. Naismith
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK,Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Gwyndaf Evans
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK,Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| |
Collapse
|
11
|
Li M, Srp J, Mareš M, Wlodawer A, Gustchina A. Structural studies of complexes of kallikrein 4 with wild-type and mutated forms of the Kunitz-type inhibitor BbKI. Acta Crystallogr D Struct Biol 2021; 77:1084-1098. [PMID: 34342281 PMCID: PMC8329858 DOI: 10.1107/s2059798321006483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/21/2021] [Indexed: 11/10/2022] Open
Abstract
Structures of BbKI, a recombinant Kunitz-type serine protease inhibitor from Bauhinia bauhinioides, complexed with human kallikrein 4 (KLK4) were determined at medium-to-high resolution in four crystal forms (space groups P3121, P6522, P21 and P61). Although the fold of the protein was virtually identical in all of the crystals, some significant differences were observed in the conformation of Arg64 of BbKI, the residue that occupies the S1 pocket in KLK4. Whereas this residue exhibited two orientations in the highest resolution structure (P3121), making either a canonical trypsin-like interaction with Asp189 of KLK4 or an alternate interaction, only a single alternate orientation was observed in the other three structures. A neighboring disulfide, Cys191-Cys220, was partially or fully broken in all KLK4 structures. Four variants of BbKI in which Arg64 was replaced by Met, Phe, Ala and Asp were expressed and crystallized, and their structures were determined in complex with KLK4. Structures of the Phe and Met variants complexed with bovine trypsin and of the Phe variant complexed with α-chymotrypsin were also determined. Although the inhibitory potency of these variant forms of BbKI was lowered by up to four orders of magnitude, only small changes were seen in the vicinity of the mutated residues. Therefore, a totality of subtle differences in KLK4-BbKI interactions within the fully extended interface in the structures of these variants might be responsible for the observed effect. Screening of the BbKI variants against a panel of serine proteases revealed an altered pattern of inhibitory specificity, which was shifted towards that of chymotrypsin-like proteases for the hydrophobic Phe and Met P1 substitutions. This work reports the first structures of plant Kunitz inhibitors with S1-family serine proteases other than trypsin, as well as new insights into the specificity of inhibition of medically relevant kallikreins.
Collapse
Affiliation(s)
- Mi Li
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jaroslav Srp
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Alexander Wlodawer
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Alla Gustchina
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
12
|
Dickerson JL, Garman EF. The potential benefits of using higher X-ray energies for macromolecular crystallography. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:922-930. [PMID: 31274414 DOI: 10.1107/s160057751900612x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/01/2019] [Indexed: 05/06/2023]
Abstract
Using X-ray energies higher than those normally used (5-15 keV) for macromolecular X-ray crystallography (MX) at synchrotron sources can theoretically increase the achievable signal as a function of dose and reduce the rate of radiation damage. In practice, a major stumbling block to the use of higher X-ray energy has been the reduced quantum efficiency of silicon detectors as the X-ray energy increases, but hybrid photon-counting CdTe detectors are optimized for higher X-ray energies, and their performance has been steadily improving. Here the potential advantages of using higher incident beam energy together with a CdTe detector for MX are explored, with a particular focus on the advantages that higher beam energies may have for MX experiments with microbeams or microcrystals. Monte Carlo simulations are presented here which for the first time include the efficiency responses of some available X-ray detectors, as well as the possible escape of photoelectrons from the sample and their entry from surrounding material. The results reveal a `sweet spot' at an incident X-ray energy of 26 keV, and show a greater than factor of two improvement in diffraction efficiency at this energy when using microbeams and microcrystals of 5 µm or less.
Collapse
Affiliation(s)
- Joshua L Dickerson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Elspeth F Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
13
|
Garman EF, Weik M. X-ray radiation damage to biological samples: recent progress. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:907-911. [PMID: 31274412 DOI: 10.1107/s1600577519009408] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 06/30/2019] [Indexed: 05/20/2023]
Abstract
With the continuing development of beamlines for macromolecular crystallography (MX) over the last few years providing ever higher X-ray flux densities, it has become even more important to be aware of the effects of radiation damage on the resulting structures. Nine papers in this issue cover a range of aspects related to the physics and chemistry of the manifestations of this damage, as observed in both MX and small-angle X-ray scattering (SAXS) on crystals, solutions and tissue samples. The reports include measurements of the heating caused by X-ray irradiation in ruby microcrystals, low-dose experiments examining damage rates as a function of incident X-ray energy up to 30 keV on a metallo-enzyme using a CdTe detector of high quantum efficiency as well as a theoretical analysis of the gains predicted in diffraction efficiency using these detectors, a SAXS examination of low-dose radiation exposure effects on the dissociation of a protein complex related to human health, theoretical calculations describing radiation chemistry pathways which aim to explain the specific structural damage widely observed in proteins, investigation of radiation-induced damage effects in a DNA crystal, a case study on a metallo-enzyme where structural movements thought to be mechanism related might actually be radiation-damage-induced changes, and finally a review describing what X-ray radiation-induced cysteine modifications can teach us about protein dynamics and catalysis. These papers, along with some other relevant literature published since the last Journal of Synchrotron Radiation Radiation Damage special issue in 2017, are briefly summarized below.
Collapse
Affiliation(s)
- Elspeth F Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France
| |
Collapse
|
14
|
Taberman H, Bury CS, van der Woerd MJ, Snell EH, Garman EF. Structural knowledge or X-ray damage? A case study on xylose isomerase illustrating both. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:931-944. [PMID: 31274415 PMCID: PMC6613113 DOI: 10.1107/s1600577519005599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/23/2019] [Indexed: 05/29/2023]
Abstract
Xylose isomerase (XI) is an industrially important metalloprotein studied for decades. Its reaction mechanism has been postulated to involve movement of the catalytic metal cofactor to several different conformations. Here, a dose-dependent approach was used to investigate the radiation damage effects on XI and their potential influence on the reaction mechanism interpreted from the X-ray derived structures. Radiation damage is still one of the major challenges for X-ray diffraction experiments and causes both global and site-specific damage. In this study, consecutive high-resolution data sets from a single XI crystal from the same wedge were collected at 100 K and the progression of radiation damage was tracked over increasing dose (0.13-3.88 MGy). The catalytic metal and its surrounding amino acid environment experience a build-up of free radicals, and the results show radiation-damage-induced structural perturbations ranging from an absolute metal positional shift to specific residue motions in the active site. The apparent metal movement is an artefact of global damage and the resulting unit-cell expansion, but residue motion appears to be driven by the dose. Understanding and identifying radiation-induced damage is an important factor in accurately interpreting the biological conclusions being drawn.
Collapse
Affiliation(s)
- Helena Taberman
- Macromolecular Crystallography (HZB-MX), Helmholtz-Zentrum Berlin, Albert-Einstein Straße 15, 12489 Berlin, Germany
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Charles S. Bury
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark J. van der Woerd
- Department of Enterprise Technology Services, 2001 Capitol Avenue, Cheyenne, WY 82001, USA
| | - Edward H. Snell
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Materials Design and Innovation, State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
15
|
Abstract
Radiation damage still remains a major limitation and challenge in macromolecular X-ray crystallography. Some of the high-intensity radiation used for diffraction data collection experiments is absorbed by the crystals, generating free radicals. These give rise to radiation damage even at cryotemperatures (~100 K), which can lead to incorrect biological conclusions being drawn from the resulting structure, or even prevent structure solution entirely. Investigation of mitigation strategies and the effects caused by radiation damage has been extensive over the past fifteen years. Here, recent understanding of the physical and chemical phenomena of radiation damage is described, along with the global effects inflicted on the collected data and the specific effects observed in the solved structure. Furthermore, this review aims to summarise the progress made in radiation damage studies in macromolecular crystallography from the experimentalist’s point of view and to give an introduction to the current literature.
Collapse
|