1
|
Lee HK, Conrad CE, Magidson V, Heinz WF, Pauly G, Yu P, Ramakrishnan S, Stagno JR, Wang YX. Developing methods to study conformational changes in RNA crystals using a photocaged ligand. Front Mol Biosci 2022; 9:964595. [PMID: 36052167 PMCID: PMC9424638 DOI: 10.3389/fmolb.2022.964595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Crystallographic observation of structural changes in real time requires that those changes be uniform both spatially and temporally. A primary challenge with time-resolved ligand-mixing diffraction experiments is asynchrony caused by variable factors, such as efficiency of mixing, rate of diffusion, crystal size, and subsequently, conformational heterogeneity. One method of minimizing such variability is use of a photolabile caged ligand, which can fully saturate the crystal environment (spatially), and whose photoactivation can rapidly (temporally) trigger the reaction in a controlled manner. Our recently published results on a ligand-mixing experiment using time-resolved X-ray crystallography (TRX) with an X-ray free electron laser (XFEL) demonstrated that large conformational changes upon ligand binding resulted in a solid-to-solid phase transition (SSPT), while maintaining Bragg diffraction. Here we investigate this SSPT by polarized video microscopy (PVM) after light-triggered release of a photo-caged adenine (pcADE). In general, the mean transition times and transition widths of the SSPT were less dependent on crystal size than what was observed in previous PVM studies with direct ADE mixing. Instead, the photo-induced transition appears to be heavily influenced by the equilibrium between caged and uncaged ADE due to relatively low sample exposure and uncaging efficiency. Nevertheless, we successfully demonstrate a method for the characterization of phase transitions in RNA crystals that are inducible with a photocaged ligand. The transition data for three crystals of different sizes were then applied to kinetic analysis by fitting to the known four-state model associated with ligand-induced conformational changes, revealing an apparent concentration of uncaged ADE in crystal of 0.43–0.46 mM. These results provide further insight into approaches to study time-resolved ligand-induced conformational changes in crystals, and in particular, highlight the feasibility of triggering phase transitions using a light-inducible system. Developing such approaches may be paramount for the rapidly emerging field of time-resolved crystallography.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Chelsie E. Conrad
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - William F. Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Gary Pauly
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Saminathan Ramakrishnan
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Jason R. Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
- *Correspondence: Jason R. Stagno, ; Yun-Xing Wang,
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
- *Correspondence: Jason R. Stagno, ; Yun-Xing Wang,
| |
Collapse
|
2
|
Ramakrishnan S, Stagno JR, Heinz WF, Zuo X, Yu P, Wang YX. The mechanism driving a solid-solid phase transition in a biomacromolecular crystal. IUCRJ 2021; 8:655-664. [PMID: 34258013 PMCID: PMC8256710 DOI: 10.1107/s2052252521004826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/06/2021] [Indexed: 06/13/2023]
Abstract
Solid-solid phase transitions (SSPTs) occur between distinguishable crystalline forms. Because of their importance in application and theory in materials science and condensed-matter physics, SSPTs have been studied most extensively in metallic alloys, inorganic salts and small organic molecular crystals, but much less so in biomacromolecular crystals. In general, the mechanisms of SSPTs at the atomic and molecular levels are not well understood. Here, the ordered molecular rearrangements in biomacromolecular crystals of the adenine riboswitch aptamer are described using real-time serial crystallography and solution atomic force microscopy. Large, ligand-induced conformational changes drive the initial phase transition from the apo unit cell (AUC) to the trans unit cell 1 (TUC1). During this transition, coaxial stacking of P1 duplexes becomes the dominant packing interface, whereas P2-P2 interactions are almost completely disrupted, resulting in 'floating' layers of molecules. The coupling points in TUC1 and their local conformational flexibility allow the molecules to reorganize to achieve the more densely packed and energetically favorable bound unit cell (BUC). This study thus reveals the interplay between the conformational changes and the crystal phases - the underlying mechanism that drives the phase transition. Using polarized video microscopy to monitor SSPTs in small crystals at high ligand concentration, the time window during which the major conformational changes take place was identified, and the in crystallo kinetics have been simulated. Together, these results provide the spatiotemporal information necessary for informing time-resolved crystallography experiments. Moreover, this study illustrates a practical approach to characterization of SSPTs in transparent crystals.
Collapse
Affiliation(s)
- Saminathan Ramakrishnan
- Structural Biophysics Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason R. Stagno
- Structural Biophysics Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - William F. Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Ping Yu
- Structural Biophysics Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Structural Biophysics Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|