1
|
Huck V, Chen PC, Xu ER, Tischer A, Klemm U, Aponte-Santamaría C, Mess C, Obser T, Kutzki F, König G, Denis CV, Gräter F, Wilmanns M, Auton M, Schneider SW, Schneppenheim R, Hennig J, Brehm MA. Gain-of-Function Variant p.Pro2555Arg of von Willebrand Factor Increases Aggregate Size through Altering Stem Dynamics. Thromb Haemost 2020; 122:226-239. [PMID: 33385180 PMCID: PMC8828397 DOI: 10.1055/a-1344-4405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The multimeric plasma glycoprotein (GP) von Willebrand factor (VWF) is best known for recruiting platelets to sites of injury during primary hemostasis. Generally, mutations in the VWF gene lead to loss of hemostatic activity and thus the bleeding disorder von Willebrand disease. By employing cone and platelet aggregometry and microfluidic assays, we uncovered a platelet GPIIb/IIIa-dependent prothrombotic gain of function (GOF) for variant p.Pro2555Arg, located in the C4 domain, leading to an increase in platelet aggregate size. We performed complementary biophysical and structural investigations using circular dichroism spectra, small-angle X-ray scattering, nuclear magnetic resonance spectroscopy, molecular dynamics simulations on the single C4 domain, and dimeric wild-type and p.Pro2555Arg constructs. C4-p.Pro2555Arg retained the overall structural conformation with minor populations of alternative conformations exhibiting increased hinge flexibility and slow conformational exchange. The dimeric protein becomes disordered and more flexible. Our data suggest that the GOF does not affect the binding affinity of the C4 domain for GPIIb/IIIa. Instead, the increased VWF dimer flexibility enhances temporal accessibility of platelet-binding sites. Using an interdisciplinary approach, we revealed that p.Pro2555Arg is the first VWF variant, which increases platelet aggregate size and shows a shear-dependent function of the VWF stem region, which can become hyperactive through mutations. Prothrombotic GOF variants of VWF are a novel concept of a VWF-associated pathomechanism of thromboembolic events, which is of general interest to vascular health but not yet considered in diagnostics. Thus, awareness should be raised for the risk they pose. Furthermore, our data implicate the C4 domain as a novel antithrombotic drug target.
Collapse
Affiliation(s)
- Volker Huck
- Department of Dermatology and Venereology, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Po-Chia Chen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Emma-Ruoqi Xu
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Alexander Tischer
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States
| | - Ulrike Klemm
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Camilo Aponte-Santamaría
- Max Planck Tandem Group in Computational Biophysics, University of los Andes, Bogotá, Colombia.,Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Christian Mess
- Department of Dermatology and Venereology, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Obser
- Department of Dermatology and Venereology, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Kutzki
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.,Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gesa König
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cécile V Denis
- Laboratory of Hemostasis, Inflammation and Thrombosis, Institut National de la Santé et de la Recherche Médicale UMR_1176, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Frauke Gräter
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany.,Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany.,University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthew Auton
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States
| | - Stefan W Schneider
- Department of Dermatology and Venereology, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reinhard Schneppenheim
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maria A Brehm
- Department of Dermatology and Venereology, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Recent developments in small-angle X-ray scattering and hybrid method approaches for biomacromolecular solutions. Emerg Top Life Sci 2018; 2:69-79. [PMID: 33525782 DOI: 10.1042/etls20170138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 01/05/2023]
Abstract
Small-angle X-ray scattering (SAXS) has become a streamline method to characterize biological macromolecules, from small peptides to supramolecular complexes, in near-native solutions. Modern SAXS requires limited amounts of purified material, without the need for labelling, crystallization, or freezing. Dedicated beamlines at modern synchrotron sources yield high-quality data within or below several milliseconds of exposure time and are highly automated, allowing for rapid structural screening under different solutions and ambient conditions but also for time-resolved studies of biological processes. The advanced data analysis methods allow one to meaningfully interpret the scattering data from monodisperse systems, from transient complexes as well as flexible and heterogeneous systems in terms of structural models. Especially powerful are hybrid approaches utilizing SAXS with high-resolution structural techniques, but also with biochemical, biophysical, and computational methods. Here, we review the recent developments in the experimental SAXS practice and in analysis methods with a specific focus on the joint use of SAXS with complementary methods.
Collapse
|
3
|
Lehmkühler F, Steinke I, Schroer MA, Fischer B, Sprung M, Grübel G. Microsecond Structural Rheology. J Phys Chem Lett 2017; 8:3581-3585. [PMID: 28719219 DOI: 10.1021/acs.jpclett.7b01355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The relationship between the local structure of complex liquids and their response to shear is generally not well understood. This concerns, in particular, the formation of particle strings in the flow direction or hydroclusters, both important for the understanding of shear thinning and thickening phenomena. Here, we present results of a microfocus X-ray scattering experiment on spherical silica colloids in a liquid jet at high shear rates. Along and across the jet, we observe direction-dependent modifications of the structure factor of the suspension, suggesting the formation of differently ordered clusters in compression lines and as particle strings. With increasing distance from the orifice, the structure relaxes to the unsheared case with a typical relaxation 10 times larger as the time scale of Brownian motion. These results provide the first experimental flow characterization of a complex fluid at high shear rates detecting cluster formation and relaxation with micrometer and microsecond resolution.
Collapse
Affiliation(s)
- Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESY , Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI) , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Ingo Steinke
- Deutsches Elektronen-Synchrotron DESY , Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI) , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Martin A Schroer
- Deutsches Elektronen-Synchrotron DESY , Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI) , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Birgit Fischer
- Deutsches Elektronen-Synchrotron DESY , Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI) , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY , Notkestraße 85, 22607 Hamburg, Germany
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron DESY , Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI) , Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|