1
|
van Driel TB, Nelson S, Armenta R, Blaj G, Boo S, Boutet S, Doering D, Dragone A, Hart P, Haller G, Kenney C, Kwaitowski M, Manger L, McKelvey M, Nakahara K, Oriunno M, Sato T, Weaver M. The ePix10k 2-megapixel hard X-ray detector at LCLS. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:608-615. [PMID: 32381760 PMCID: PMC7206547 DOI: 10.1107/s1600577520004257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/27/2020] [Indexed: 05/25/2023]
Abstract
The ePix10ka2M (ePix10k) is a new large area detector specifically developed for X-ray free-electron laser (XFEL) applications. The hybrid pixel detector was developed at SLAC to provide a hard X-ray area detector with a high dynamic range, running at the 120 Hz repetition rate of the Linac Coherent Light Source (LCLS). The ePix10k consists of 16 modules, each with 352 × 384 pixels of 100 µm × 100 µm distributed on four ASICs, resulting in a 2.16 megapixel detector, with a 16.5 cm × 16.5 cm active area and ∼80% coverage. The high dynamic range is achieved with three distinct gain settings (low, medium, high) as well as two auto-ranging modes (high-to-low and medium-to-low). Here the three fixed gain modes are evaluated. The resulting dynamic range (from single photon counting to 10000 photons pixel-1 pulse-1 at 8 keV) makes it suitable for a large number of different XFEL experiments. The ePix10k replaces the large CSPAD in operation since 2011. The dimensions of the two detectors are similar, making the upgrade from CSPAD to ePix10k straightforward for most setups, with the ePix10k improving on experimental performance. The SLAC-developed ePix cameras all utilize a similar platform, are tailored to target different experimental conditions and are designed to provide an upgrade path for future high-repetition-rate XFELs. Here the first measurements on this new ePix10k detector are presented and the performance under typical XFEL conditions evaluated during an LCLS X-ray diffuse scattering experiment measuring the 9.5 keV X-ray photons scattered from a thin liquid jet.
Collapse
Affiliation(s)
- Tim Brandt van Driel
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Silke Nelson
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Rebecca Armenta
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Gabriel Blaj
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Stephen Boo
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Sébastien Boutet
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Dionisio Doering
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Angelo Dragone
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Philip Hart
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Gunther Haller
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Christopher Kenney
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Maciej Kwaitowski
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Leo Manger
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Mark McKelvey
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Kaz Nakahara
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Marco Oriunno
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Takahiro Sato
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Matt Weaver
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
2
|
O'Sullivan ME, Poitevin F, Sierra RG, Gati C, Dao EH, Rao Y, Aksit F, Ciftci H, Corsepius N, Greenhouse R, Hayes B, Hunter MS, Liang M, McGurk A, Mbgam P, Obrinsky T, Pardo-Avila F, Seaberg MH, Cheng AG, Ricci AJ, DeMirci H. Aminoglycoside ribosome interactions reveal novel conformational states at ambient temperature. Nucleic Acids Res 2019; 46:9793-9804. [PMID: 30113694 PMCID: PMC6182148 DOI: 10.1093/nar/gky693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/19/2018] [Indexed: 11/21/2022] Open
Abstract
The bacterial 30S ribosomal subunit is a primary antibiotic target. Despite decades of discovery, the mechanisms by which antibiotic binding induces ribosomal dysfunction are not fully understood. Ambient temperature crystallographic techniques allow more biologically relevant investigation of how local antibiotic binding site interactions trigger global subunit rearrangements that perturb protein synthesis. Here, the structural effects of 2-deoxystreptamine (paromomycin and sisomicin), a novel sisomicin derivative, N1-methyl sulfonyl sisomicin (N1MS) and the non-deoxystreptamine (streptomycin) aminoglycosides on the ribosome at ambient and cryogenic temperatures were examined. Comparative studies led to three main observations. First, individual aminoglycoside–ribosome interactions in the decoding center were similar for cryogenic versus ambient temperature structures. Second, analysis of a highly conserved GGAA tetraloop of h45 revealed aminoglycoside-specific conformational changes, which are affected by temperature only for N1MS. We report the h44–h45 interface in varying states, i.e. engaged, disengaged and in equilibrium. Third, we observe aminoglycoside-induced effects on 30S domain closure, including a novel intermediary closure state, which is also sensitive to temperature. Analysis of three ambient and five cryogenic crystallography datasets reveal a correlation between h44–h45 engagement and domain closure. These observations illustrate the role of ambient temperature crystallography in identifying dynamic mechanisms of ribosomal dysfunction induced by local drug-binding site interactions. Together, these data identify tertiary ribosomal structural changes induced by aminoglycoside binding that provides functional insight and targets for drug design.
Collapse
Affiliation(s)
- Mary E O'Sullivan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, USA, 94305
| | - Frédéric Poitevin
- Department of Structural Biology, Stanford University, Palo Alto, CA, USA, 94305.,Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, CA, USA, 94025
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, CA, USA, 94025
| | - Cornelius Gati
- Department of Structural Biology, Stanford University, Palo Alto, CA, USA, 94305.,Biosciences Division, SLAC National Laboratory, Menlo Park, CA, USA, 94025
| | - E Han Dao
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, CA, USA, 94025
| | - Yashas Rao
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, CA, USA, 94025
| | - Fulya Aksit
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, CA, USA, 94025
| | - Halilibrahim Ciftci
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, CA, USA, 94025
| | - Nicholas Corsepius
- Department of Structural Biology, Stanford University, Palo Alto, CA, USA, 94305
| | - Robert Greenhouse
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, USA, 94305
| | - Brandon Hayes
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, CA, USA, 94025
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, CA, USA, 94025
| | - Mengling Liang
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, CA, USA, 94025
| | - Alex McGurk
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, CA, USA, 94025
| | - Paul Mbgam
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, CA, USA, 94025
| | - Trevor Obrinsky
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, CA, USA, 94025
| | - Fátima Pardo-Avila
- Department of Structural Biology, Stanford University, Palo Alto, CA, USA, 94305
| | - Matthew H Seaberg
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, CA, USA, 94025
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, USA, 94305
| | - Anthony J Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, USA, 94305
| | - Hasan DeMirci
- Department of Structural Biology, Stanford University, Palo Alto, CA, USA, 94305.,Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, CA, USA, 94025.,Biosciences Division, SLAC National Laboratory, Menlo Park, CA, USA, 94025
| |
Collapse
|
3
|
Dao EH, Poitevin F, Sierra RG, Gati C, Rao Y, Ciftci HI, Akşit F, McGurk A, Obrinski T, Mgbam P, Hayes B, De Lichtenberg C, Pardo-Avila F, Corsepius N, Zhang L, Seaberg MH, Hunter MS, Liang M, Koglin JE, Wakatsuki S, Demirci H. Structure of the 30S ribosomal decoding complex at ambient temperature. RNA (NEW YORK, N.Y.) 2018; 24:1667-1676. [PMID: 30139800 PMCID: PMC6239188 DOI: 10.1261/rna.067660.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/14/2018] [Indexed: 05/29/2023]
Abstract
The ribosome translates nucleotide sequences of messenger RNA to proteins through selection of cognate transfer RNA according to the genetic code. To date, structural studies of ribosomal decoding complexes yielding high-resolution data have predominantly relied on experiments performed at cryogenic temperatures. New light sources like the X-ray free electron laser (XFEL) have enabled data collection from macromolecular crystals at ambient temperature. Here, we report an X-ray crystal structure of the Thermus thermophilus 30S ribosomal subunit decoding complex to 3.45 Å resolution using data obtained at ambient temperature at the Linac Coherent Light Source (LCLS). We find that this ambient-temperature structure is largely consistent with existing cryogenic-temperature crystal structures, with key residues of the decoding complex exhibiting similar conformations, including adenosine residues 1492 and 1493. Minor variations were observed, namely an alternate conformation of cytosine 1397 near the mRNA channel and the A-site. Our serial crystallography experiment illustrates the amenability of ribosomal microcrystals to routine structural studies at ambient temperature, thus overcoming a long-standing experimental limitation to structural studies of RNA and RNA-protein complexes at near-physiological temperatures.
Collapse
Affiliation(s)
- E Han Dao
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Frédéric Poitevin
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, California 94025, USA
- Department of Structural Biology, Stanford University, Palo Alto, California 94305, USA
| | - Raymond G Sierra
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, California 94025, USA
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Cornelius Gati
- Department of Structural Biology, Stanford University, Palo Alto, California 94305, USA
- Biosciences Division, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Yashas Rao
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, California 94025, USA
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Halil Ibrahim Ciftci
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Fulya Akşit
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Alex McGurk
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Trevor Obrinski
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Paul Mgbam
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Brandon Hayes
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Casper De Lichtenberg
- Institutionen för Kemi, Kemiskt Biologiskt Centrum, Umeå Universitet, SE-901 87 Umeå, Sweden
| | - Fatima Pardo-Avila
- Department of Structural Biology, Stanford University, Palo Alto, California 94305, USA
| | - Nicholas Corsepius
- Department of Structural Biology, Stanford University, Palo Alto, California 94305, USA
| | - Lindsey Zhang
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Matthew H Seaberg
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Mengling Liang
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Jason E Koglin
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Soichi Wakatsuki
- Department of Structural Biology, Stanford University, Palo Alto, California 94305, USA
- Biosciences Division, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Hasan Demirci
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, California 94025, USA
- Department of Structural Biology, Stanford University, Palo Alto, California 94305, USA
- Biosciences Division, SLAC National Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|