1
|
Riffe EJ, Bernal F, Kamal C, Mizuno H, Lindsey RK, Hamel S, Raj SL, Hull CJ, Kwon S, Park SH, Cooper JK, Yang F, Liu YS, Guo J, Nordlund D, Drisdell WS, Zuerch MW, Whitley HD, Odelius M, Schwartz CP, J Saykally R. Time-Resolved X-ray Emission Spectroscopy and Resonant Inelastic X-ray Scattering Spectroscopy of Laser Irradiated Carbon. J Phys Chem B 2024; 128:6422-6433. [PMID: 38906826 DOI: 10.1021/acs.jpcb.4c02862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The existence of liquid carbon as an intermediate phase preceding the formation of novel carbon materials has been a point of contention for several decades. Experimental observation of such a liquid state requires nonthermal melting of solid carbon materials at various laser fluences and pulse properties. Reflectivity experiments performed in the mid-1980s reached opposing conclusions regarding the metallic or insulating properties of the purported liquid state. Time-resolved X-ray absorption studies showed shortening of C-C bonds and increasing diffraction densities, thought to evidence a liquid or glassy carbon state, respectively. Nevertheless, none of these experiments provided information on the electronic structure of the proposed liquid state. Herein, we report the results of time-resolved resonant inelastic X-ray scattering (RIXS) and time-resolved X-ray emission spectroscopy (XES) studies on amorphous carbon (a-C) and ultrananocrystalline diamond (UNCD) as a function of delay time between the irradiating pulse and X-ray probe. For both a-C and UNCD, we attribute decreases in RIXS or XES signals to transition blocking, relaxation, and finally, ablation. Increased signal at 20 ps following the irradiation of the UNCD is attributed to the probable formation of nanoscale structures in the ablation plume. Differences in the amount of signal observed between a-C and UNCD are explained by the difference in sample thickness and, specifically, incomplete melting of the UNCD film. Comparisons to spectral simulations based on MD trajectories at extreme conditions indicate that the carbon state in our experiments is crystalline. Normal mode analysis confirmed that symmetrical bending or stretching of the C-C bonds in the diamond lattice results in XES spectra with small intensity differences. Overall, we observed no evidence of melting to a liquid state, as determined by the lack of changes in the spectral properties for up to 100 ps delays following the melting pulses.
Collapse
Affiliation(s)
- Erika J Riffe
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Franky Bernal
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chinnathambi Kamal
- Theory and Simulations Laboratory, Theoretical and Computational Physics Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400094, India
| | - Hikaru Mizuno
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca K Lindsey
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sebastien Hamel
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Sumana L Raj
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher J Hull
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Soonnam Kwon
- PAL-XFEL, Pohang Accelerator Laboratory, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Sang Han Park
- PAL-XFEL, Pohang Accelerator Laboratory, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Jason K Cooper
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Feipeng Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yi-Sheng Liu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dennis Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Walter S Drisdell
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Michael W Zuerch
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Science Division, Lawerence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Heather D Whitley
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Michael Odelius
- Department of Physics, Stockholm University, 10691 Stockholm, Sweden
| | - Craig P Schwartz
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Nevada Extreme Conditions Laboratory, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
| | - Richard J Saykally
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Teramoto T, Minemoto S, Majima T, Mizuno T, Mun JH, Yagishita A, Decleva P, Tsuru S. Basic studies toward ultrafast soft x-ray photoelectron diffraction; its application to probing local structure in iodobenzene molecules. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:024303. [PMID: 35496382 PMCID: PMC9050171 DOI: 10.1063/4.0000141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Ultrafast x-ray photoelectron diffraction (UXPD) for free molecules has a promising potential to probe the local structures of the molecules in an element-specific fashion. Our UXPD scheme consists of three steps: (1) near-infrared laser (NIR) with ns pulse duration aligns sample molecules, (2) ultra-violet laser with fs pulse duration pumps the aligned molecules, and (3) soft x-ray free-electron laser (SXFEL) with fs pulse duration probes the molecules by measuring x-ray photoelectron diffraction (XPD) profiles. Employing steps of (1) and (3), we have measured I 3d XPD profiles from ground state iodobenzene aligned by the NIR laser with the SXFEL. Then, we have intensively calculated I 3d XPD profiles with density functional theory, taking degrees of alignments of the molecules into account, to extract a distance between C and I atoms in iodobenzene from the experimental I 3d XPD profiles. Although we have failed to determine the distance from the comparison between the experimental and theoretical results, we have succeeded in concluding that the degeneracies of the initial state eliminate the sensitivity on molecular structure in the I 3d XPD profiles. Thus, the observation of fine structures in the XPD profiles could be expected, if a nondegenerate molecular orbital is selected for a probe of UXPD. Finally, we have summarized our criteria to perform UXPD successfully: (1) to use SXFEL, (2) to prepare sample molecules with the degree of alignment higher than 0.8, and (3) to select a photoemission process from a nondegenerate inner-shell orbital of sample molecules.
Collapse
Affiliation(s)
- T. Teramoto
- Institute for Radiation Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - S. Minemoto
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - T. Majima
- Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - T. Mizuno
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - J. H. Mun
- Center for Attosecond Science and Technology, Max Planck POSTECH/KOREA Research Initiative, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - A. Yagishita
- Institute of Materials Structure Science, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - P. Decleva
- CNR IOM and DSCF, Università degli Studi di Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy
| | - S. Tsuru
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| |
Collapse
|
3
|
Abstract
The X-ray free-electron laser of the Pohang Accelerator Laboratory (PAL-XFEL) was opened to users in 2017. Since then, significant progress has been made in PAL-XFEL operation and beamline experiments. This includes increasing the FEL pulse energy, increasing the FEL photon energy, generating self-seeding FEL, and trials of two-color operation. In the beamline, new instruments or endstations have been added or are being prepared. Overall, beamline operation has been stabilized since its initiation, which has enabled excellent scientific results through efficient user experiments. In this paper, we describe details of the recent progress of the PAL-XFEL.
Collapse
|
4
|
David C, Seniutinas G, Makita M, Rösner B, Rehanek J, Karvinen P, Löhl F, Abela R, Patthey L, Juranić P. Spectral monitoring at SwissFEL using a high-resolution on-line hard X-ray single-shot spectrometer. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1978-1984. [PMID: 34738953 PMCID: PMC8570208 DOI: 10.1107/s1600577521009619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The performance and parameters of the online photon single-shot spectrometer (PSSS) at the Aramis beamline of the SwissFEL free-electron laser are presented. The device operates between the photon energies 4 and 13 keV and uses diamond transmission gratings and bent Si crystals for spectral measurements on the first diffraction order of the beam. The device has an energy window of 0.7% of the median photon energy of the free-electron laser pulses and a spectral resolution (full width at half-maximum) ΔE/E on the order of 10-5. The device was characterized by comparing its performance with reference data from synchrotron sources, and a parametric study investigated other effects that could affect the reliability of the spectral information.
Collapse
Affiliation(s)
- Christian David
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | | | - Mikako Makita
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Benedikt Rösner
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Jens Rehanek
- Advanced Accelerator Technologies AG, 5234 Villigen, Switzerland
| | - Petri Karvinen
- Institute of Photonics, University of Eastern Finland (UEF), FI-80100 Joensuu, Finland
| | - Florian Löhl
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Rafael Abela
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Luc Patthey
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Pavle Juranić
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| |
Collapse
|
5
|
Jang H, Kim HD, Kim M, Park SH, Kwon S, Lee JY, Park SY, Park G, Kim S, Hyun H, Hwang S, Lee CS, Lim CY, Gang W, Kim M, Heo S, Kim J, Jung G, Kim S, Park J, Kim J, Shin H, Park J, Koo TY, Shin HJ, Heo H, Kim C, Min CK, Han JH, Kang HS, Lee HS, Kim KS, Eom I, Rah S. Time-resolved resonant elastic soft x-ray scattering at Pohang Accelerator Laboratory X-ray Free Electron Laser. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:083904. [PMID: 32872965 DOI: 10.1063/5.0016414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Resonant elastic x-ray scattering has been widely employed for exploring complex electronic ordering phenomena, such as charge, spin, and orbital order, in particular, in strongly correlated electronic systems. In addition, recent developments in pump-probe x-ray scattering allow us to expand the investigation of the temporal dynamics of such orders. Here, we introduce a new time-resolved Resonant Soft X-ray Scattering (tr-RSXS) endstation developed at the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL). This endstation has an optical laser (wavelength of 800 nm plus harmonics) as the pump source. Based on the commissioning results, the tr-RSXS at PAL-XFEL can deliver a soft x-ray probe (400 eV-1300 eV) with a time resolution of ∼100 fs without jitter correction. As an example, the temporal dynamics of a charge density wave on a high-temperature cuprate superconductor is demonstrated.
Collapse
Affiliation(s)
- Hoyoung Jang
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Hyeong-Do Kim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Minseok Kim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Sang Han Park
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Soonnam Kwon
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Ju Yeop Lee
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Sang-Youn Park
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Gisu Park
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Seonghan Kim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - HyoJung Hyun
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Sunmin Hwang
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Chae-Soon Lee
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Chae-Yong Lim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Wonup Gang
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Myeongjin Kim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Seongbeom Heo
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Jinhong Kim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Gigun Jung
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Seungnam Kim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Jaeku Park
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Jihwa Kim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Hocheol Shin
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Jaehun Park
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Tae-Yeong Koo
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Hyun-Joon Shin
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Hoon Heo
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Changbum Kim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Changi-Ki Min
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Jang-Hui Han
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Heung-Sik Kang
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Heung-Soo Lee
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Kyung Sook Kim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Intae Eom
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Seungyu Rah
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|