1
|
Li F, Liu R, Li W, Xie M, Qin S. Synchrotron Radiation: A Key Tool for Drug Discovery. Bioorg Med Chem Lett 2024; 114:129990. [PMID: 39406298 DOI: 10.1016/j.bmcl.2024.129990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/22/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Synchrotron radiation is extensively utilized in the domains of materials science, physical chemistry, and life science, resulting from its high intensity, exceptional monochromaticity, superior collimation, and broad wave spectrum. This top-notch light source has also made significant contributions to the progress of biomedicine. The advancement of synchrotron radiation-based X-ray and protein crystallography technologies has created new prospects for drug discovery. These innovative techniques have opened up exciting avenues in the field. The investigation of protein crystal structures and the elucidation of the spatial configuration of biological macromolecules have revealed intricate details regarding the modes of protein binding. Furthermore, the screening of crystal polymorphs and ligands has laid the groundwork for rational drug modification and the improvement of drug physicochemical properties. As science and technology continue to advance, the techniques for analyzing structures using synchrotron radiation sources and the design of corresponding crystallographic beamline stations are undergoing continuous enhancement. These cutting-edge tools and facilities are expected to expedite the drug development process and rectify the current situation of a lack of targeted drugs.
Collapse
Affiliation(s)
- Fengcheng Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Mingyuan Xie
- Institute of Advanced Science Facilities, Shenzhen, Guangdong 518107, China.
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
2
|
Nguyen AD, Michael N, Sauthof L, von Sass J, Hoang OT, Schmidt A, La Greca M, Schlesinger R, Budisa N, Scheerer P, Mroginski MA, Kraskov A, Hildebrandt P. Hydrogen Bonding and Noncovalent Electric Field Effects in the Photoconversion of a Phytochrome. J Phys Chem B 2024; 128:11644-11657. [PMID: 39561028 PMCID: PMC11613453 DOI: 10.1021/acs.jpcb.4c06419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
A profound understanding of protein structure and mechanism requires dedicated experimental and theoretical tools to elucidate electrostatic and hydrogen bonding interactions in proteins. In this work, we employed an approach to disentangle noncovalent and hydrogen-bonding electric field changes during the reaction cascade of a multidomain protein, i.e., the phytochrome Agp2. The approach exploits the spectroscopic properties of nitrile probes commonly used as reporter groups of the vibrational Stark effect. These probes were introduced into the protein through site-specific incorporation of noncanonical amino acids resulting in four variants with different positions and orientations of the nitrile groups. All substitutions left structures and the reaction mechanism unchanged. Structural models of the dark states (Pfr) were used to evaluate the total electric field at the nitrile label and its transition dipole moment. These quantities served as an internal standard to calculate the respective properties of the photoinduced products (Lumi-F, Meta-F, and Pr) based on the relative intensities of the nitrile stretching bands. In most cases, the spectral analysis revealed two substates with a nitrile in a hydrogen-bonded or hydrophobic environment. Using frequencies and intensities, we managed to extract the noncovalent contribution of the electric field from the individual substates. This analysis resulted in profiles of the noncovalent and hydrogen-bond-related electric fields during the photoinduced reaction cascade of Agp2. These profiles, which vary significantly among the four variants due to the different positions and orientations of the nitrile probes, were discussed in the context of the molecular events along the Pfr → Pr reaction cascade.
Collapse
Affiliation(s)
- Anh Duc Nguyen
- Institut
für Chemie, Sekr. C7, Technische
Universität Berlin, Straße des 17. Juni 115, Berlin D-10623, Germany
| | - Norbert Michael
- Institut
für Chemie, Sekr. PC14, Technische
Universität Berlin, Straße des 17. Juni 135, Berlin D-10623, Germany
| | - Luisa Sauthof
- Institute
of Medical Physics and Biophysics, Group Structural Biology of Cellular
Signaling, Charité − Universitätsmedizin Berlin,
Corporate member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, Charitéplatz
1, Berlin D-10117, Germany
| | - Johannes von Sass
- Institut
für Chemie, Sekr. PC14, Technische
Universität Berlin, Straße des 17. Juni 135, Berlin D-10623, Germany
| | - Oanh Tu Hoang
- Institut
für Chemie, Sekr. C7, Technische
Universität Berlin, Straße des 17. Juni 115, Berlin D-10623, Germany
| | - Andrea Schmidt
- Institute
of Medical Physics and Biophysics, Group Structural Biology of Cellular
Signaling, Charité − Universitätsmedizin Berlin,
Corporate member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, Charitéplatz
1, Berlin D-10117, Germany
| | - Mariafrancesca La Greca
- Experimental
Physics: Genetic Biophysics, Freie Universität
Berlin, Arnimallee 14, Berlin D-14195, Germany
| | - Ramona Schlesinger
- Experimental
Physics: Genetic Biophysics, Freie Universität
Berlin, Arnimallee 14, Berlin D-14195, Germany
| | - Nediljko Budisa
- Department
of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Patrick Scheerer
- Institute
of Medical Physics and Biophysics, Group Structural Biology of Cellular
Signaling, Charité − Universitätsmedizin Berlin,
Corporate member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, Charitéplatz
1, Berlin D-10117, Germany
| | - Maria Andrea Mroginski
- Institut
für Chemie, Sekr. C7, Technische
Universität Berlin, Straße des 17. Juni 115, Berlin D-10623, Germany
| | - Anastasia Kraskov
- Institut
für Chemie, Sekr. PC14, Technische
Universität Berlin, Straße des 17. Juni 135, Berlin D-10623, Germany
| | - Peter Hildebrandt
- Institut
für Chemie, Sekr. PC14, Technische
Universität Berlin, Straße des 17. Juni 135, Berlin D-10623, Germany
| |
Collapse
|
3
|
Warren AJ, Trincao J, Crawshaw AD, Beale EV, Duller G, Stallwood A, Lunnon M, Littlewood R, Prescott A, Foster A, Smith N, Rehm G, Gayadeen S, Bloomer C, Alianelli L, Laundy D, Sutter J, Cahill L, Evans G. VMXm - A sub-micron focus macromolecular crystallography beamline at Diamond Light Source. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1593-1608. [PMID: 39475835 PMCID: PMC11542661 DOI: 10.1107/s1600577524009160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/18/2024] [Indexed: 11/08/2024]
Abstract
VMXm joins the suite of operational macromolecular crystallography beamlines at Diamond Light Source. It has been designed to optimize rotation data collections from protein crystals less than 10 µm and down to below 1 µm in size. The beamline has a fully focused beam of 0.3 × 2.3 µm (vertical × horizontal) with a tuneable energy range (6-28 keV) and high flux (1.6 × 1012 photons s-1 at 12.5 keV). The crystals are housed within a vacuum chamber to minimize background scatter from air. Crystals are plunge-cooled on cryo-electron microscopy grids, allowing much of the liquid surrounding the crystals to be removed. These factors improve the signal-to-noise during data collection and the lifetime of the microcrystals can be prolonged by exploiting photoelectron escape. A novel in vacuo sample environment has been designed which also houses a scanning electron microscope to aid with sample visualization. This combination of features at VMXm allows measurements at the physical limits of X-ray crystallography on biomacromolecules to be explored and exploited.
Collapse
Affiliation(s)
- Anna J. Warren
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Jose Trincao
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Adam D. Crawshaw
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Emma V. Beale
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
- Paul Scherrer InstitutForschungsstrasse 111 5232 Villigen PSISwitzerland
| | - Graham Duller
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Andrew Stallwood
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
- Rosalind Franklin InstituteRutherford Appleton LaboratoryHarwell CampusDidcotOxfordshireOX11 0QXUnited Kingdom
| | - Mark Lunnon
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Richard Littlewood
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Adam Prescott
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Andrew Foster
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Neil Smith
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Guenther Rehm
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
- Helmholtz-Zentrum BerlinHahn-Meitner-Platz 1 14109 BerlinGermany
| | - Sandira Gayadeen
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Christopher Bloomer
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Lucia Alianelli
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - David Laundy
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - John Sutter
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Leo Cahill
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Gwyndaf Evans
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
- Rosalind Franklin InstituteRutherford Appleton LaboratoryHarwell CampusDidcotOxfordshireOX11 0QXUnited Kingdom
| |
Collapse
|
4
|
Rogge K, Wagner TJ, Hoffmeister D, Rupp B, Werten S. Substrate recognition by the 4-hydroxytryptamine kinase PsiK in psilocybin biosynthesis. FEBS Lett 2024. [PMID: 39449146 DOI: 10.1002/1873-3468.15042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024]
Abstract
Psilocybin, the natural hallucinogen from Psilocybe (magic) mushrooms, is a highly promising drug candidate for the treatment of depression and several other mental health conditions. Biosynthesis of psilocybin from the amino acid l-tryptophan involves four strictly sequential modifications. The third of these, ATP-dependent phosphorylation of the intermediate 4-hydroxytryptamine, is catalysed by PsiK. Here we present a crystallographic analysis and a structure-based mutagenesis study of this kinase, providing insight into its mode of substrate recognition. The results of our work will support future bioengineering efforts aimed at generating variants of psilocybin with enhanced therapeutic properties.
Collapse
Affiliation(s)
- Kai Rogge
- Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
- Research Group Pharmaceutical Microbiology, Leibniz Institute of Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Tobias Johannes Wagner
- Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
- Research Group Pharmaceutical Microbiology, Leibniz Institute of Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Dirk Hoffmeister
- Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
- Research Group Pharmaceutical Microbiology, Leibniz Institute of Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Bernhard Rupp
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Austria
- k.-k. Hofkristallamt, San Diego, CA, USA
| | - Sebastiaan Werten
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Austria
| |
Collapse
|
5
|
Hudspeth J, Rogge K, Wagner T, Müll M, Hoffmeister D, Rupp B, Werten S. The Second Methylation in Psilocybin Biosynthesis Is Enabled by a Hydrogen Bonding Network Extending into the Secondary Sphere Surrounding the Methyltransferase Active Site. Chembiochem 2024:e202400497. [PMID: 39413044 DOI: 10.1002/cbic.202400497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/18/2024]
Abstract
The Psilocybe cubensis SAM-dependent methyltransferase, PsiM, catalyzes the last step in the biosynthesis of psilocybin. Likely evolved from monomethylating RNA methyltransferases, PsiM acquired a key amino acid exchange in the secondary sphere of the active site, M247 N, which is responsible for its capacity to dimethylate. Two variants, PsiMN247M and PsiMN247A, were generated to further examine the role of Asn247 for mono- and dimethylation in PsiM. Herein, we present the kinetic profiles of both variants and crystal structures at resolutions between 0.9 and 1.0 Å. Each variant was crystallized as a ternary complex with the non-methylated acceptor substrate, norbaeocystin and S-adenosyl-l-homocysteine, and in a second complex with the cofactor analog, sinefungin, and the monomethylated substrate, baeocystin. Consistent with the inability of the variants to catalyze a second methyl transfer, these structures reveal catalytically non-productive conformations and a high level of disorder of the methylamine group of baeocystin. Additionally, both variants exhibit destabilization in the β5-β7 sheets and a conserved β-turn of the core Rossmann fold, causing 20-fold reduced substrate binding and 2-fold lower catalytic efficiency even with norbaeocystin. Our structural and kinetic analyses of the variants suggest that Asn247 is essential to allow enough space in the active site for multiple methylations while also participating in a network of hydrogen bonds that stabilizes secondary structure elements in the immediate vicinity of the active site for optimal methylation of norbaeocystin.
Collapse
Affiliation(s)
- Jesse Hudspeth
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Kai Rogge
- Institute of Pharmacy, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, Jena, 07745, Germany
- Pharmaceutical Microbiology, Leibniz Institute of Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstrasse 11a, Jena, 07745, Germany
| | - Tobias Wagner
- Institute of Pharmacy, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, Jena, 07745, Germany
| | - Maximilian Müll
- Biosynthetic Design of Natural Products, Leibniz Institute of Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstrasse 11a, Jena, 07745, Germany
| | - Dirk Hoffmeister
- Institute of Pharmacy, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, Jena, 07745, Germany
- Pharmaceutical Microbiology, Leibniz Institute of Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstrasse 11a, Jena, 07745, Germany
| | - Bernhard Rupp
- Institute for General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, Innsbruck, 6020, Austria
- k.-k. Hofkristallamt, 991 Audrey Place, Vista, CA, 92084, USA
| | - Sebastiaan Werten
- Institute for General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, Innsbruck, 6020, Austria
| |
Collapse
|
6
|
Amjadi R, Werten S, Lomada SK, Baldin C, Scheffzek K, Dunzendorfer-Matt T, Wieland T. Mechanistic Insights into Substrate Recognition of Human Nucleoside Diphosphate Kinase C Based on Nucleotide-Induced Structural Changes. Int J Mol Sci 2024; 25:9768. [PMID: 39337255 PMCID: PMC11431768 DOI: 10.3390/ijms25189768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Nucleoside diphosphate kinases (NDPKs) are encoded by nme genes and exist in various isoforms. Based on interactions with other proteins, they are involved in signal transduction, development and pathological processes such as tumorigenesis, metastasis and heart failure. In this study, we report a 1.25 Å resolution structure of human homohexameric NDPK-C bound to ADP and describe the yet unknown complexes formed with GDP, UDP and cAMP, all obtained at a high resolution via X-ray crystallography. Each nucleotide represents a distinct group of mono- or diphosphate purine or pyrimidine bases. We analyzed different NDPK-C nucleotide complexes in the presence and absence of Mg2+ and explain how this ion plays an essential role in NDPKs' phosphotransferase activity. By analyzing a nucleotide-depleted NDPK-C structure, we detected conformational changes upon substrate binding and identify flexible regions in the substrate binding site. A comparison of NDPK-C with other human isoforms revealed a strong similarity in the overall composition with regard to the 3D structure, but significant differences in the charge and hydrophobicity of the isoforms' surfaces. This may play a role in isoform-specific NDPK interactions with ligands and/or important complex partners like other NDPK isoforms, as well as monomeric and heterotrimeric G proteins. Considering the recently discovered role of NDPK-C in different pathologies, these high-resolution structures thus might provide a basis for interaction studies with other proteins or small ligands, like activators or inhibitors.
Collapse
Affiliation(s)
- Rezan Amjadi
- Institute of Molecular Biochemistry, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (R.A.); (K.S.)
| | - Sebastiaan Werten
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria;
| | - Santosh Kumar Lomada
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13–17, 68167 Mannheim, Germany;
| | - Clara Baldin
- Department of Microbiology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria;
| | - Klaus Scheffzek
- Institute of Molecular Biochemistry, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (R.A.); (K.S.)
| | - Theresia Dunzendorfer-Matt
- Institute of Molecular Biochemistry, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (R.A.); (K.S.)
| | - Thomas Wieland
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13–17, 68167 Mannheim, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| |
Collapse
|
7
|
Foos N, Florial JB, Eymery M, Sinoir J, Felisaz F, Oscarsson M, Beteva A, Bowler MW, Nurizzo D, Papp G, Soler-Lopez M, Nanao M, Basu S, McCarthy AA. In situ serial crystallography facilitates 96-well plate structural analysis at low symmetry. IUCRJ 2024; 11:780-791. [PMID: 39008358 PMCID: PMC11364034 DOI: 10.1107/s2052252524005785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
The advent of serial crystallography has rejuvenated and popularized room-temperature X-ray crystal structure determination. Structures determined at physiological temperature reveal protein flexibility and dynamics. In addition, challenging samples (e.g. large complexes, membrane proteins and viruses) form fragile crystals that are often difficult to harvest for cryo-crystallography. Moreover, a typical serial crystallography experiment requires a large number of microcrystals, mainly achievable through batch crystallization. Many medically relevant samples are expressed in mammalian cell lines, producing a meager quantity of protein that is incompatible with batch crystallization. This can limit the scope of serial crystallography approaches. Direct in situ data collection from a 96-well crystallization plate enables not only the identification of the best diffracting crystallization condition but also the possibility for structure determination under ambient conditions. Here, we describe an in situ serial crystallography (iSX) approach, facilitating direct measurement from crystallization plates mounted on a rapidly exchangeable universal plate holder deployed at a microfocus beamline, ID23-2, at the European Synchrotron Radiation Facility. We applied our iSX approach on a challenging project, autotaxin, a therapeutic target expressed in a stable human cell line, to determine the structure in the lowest-symmetry P1 space group at 3.0 Å resolution. Our in situ data collection strategy provided a complete dataset for structure determination while screening various crystallization conditions. Our data analysis reveals that the iSX approach is highly efficient at a microfocus beamline, improving throughput and demonstrating how crystallization plates can be routinely used as an alternative method of presenting samples for serial crystallography experiments at synchrotrons.
Collapse
Affiliation(s)
- Nicolas Foos
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | - Jean-Baptise Florial
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | - Mathias Eymery
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | - Jeremy Sinoir
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | - Franck Felisaz
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | - Marcus Oscarsson
- European Synchrotron Radiation Facility71 Avenue des Martyrs38042GrenobleFrance
| | - Antonia Beteva
- European Synchrotron Radiation Facility71 Avenue des Martyrs38042GrenobleFrance
| | - Matthew W. Bowler
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | - Didier Nurizzo
- European Synchrotron Radiation Facility71 Avenue des Martyrs38042GrenobleFrance
| | - Gergely Papp
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | | | - Max Nanao
- European Synchrotron Radiation Facility71 Avenue des Martyrs38042GrenobleFrance
| | - Shibom Basu
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | - Andrew A. McCarthy
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| |
Collapse
|
8
|
Zielinski KA, Dolamore C, Dalton KM, Smith N, Termini J, Henning R, Srajer V, Hekstra DR, Pollack L, Wilson MA. Resolving DJ-1 Glyoxalase Catalysis Using Mix-and-Inject Serial Crystallography at a Synchrotron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604369. [PMID: 39071394 PMCID: PMC11275809 DOI: 10.1101/2024.07.19.604369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
DJ-1 (PARK7) is an intensively studied protein whose cytoprotective activities are dysregulated in multiple diseases. DJ-1 has been reported as having two distinct enzymatic activities in defense against reactive carbonyl species that are difficult to distinguish in conventional biochemical experiments. Here, we establish the mechanism of DJ-1 using a synchrotron-compatible version of mix-and-inject-serial crystallography (MISC), which was previously performed only at XFELs, to directly observe DJ-1 catalysis. We designed and used new diffusive mixers to collect time-resolved Laue diffraction data of DJ-1 catalysis at a pink beam synchrotron beamline. Analysis of structurally similar methylglyoxal-derived intermediates formed through the DJ-1 catalytic cycle shows that the enzyme catalyzes nearly two turnovers in the crystal and defines key aspects of its glyoxalase mechanism. In addition, DJ-1 shows allosteric communication between a distal site at the dimer interface and the active site that changes during catalysis. Our results rule out the widely cited deglycase mechanism for DJ-1 action and provide an explanation for how DJ-1 produces L-lactate with high chiral purity.
Collapse
Affiliation(s)
- Kara A. Zielinski
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Cole Dolamore
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588
| | - Kevin M. Dalton
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- Department of Biology, New York University, New York, NY 10003
- Linac Coherent Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Nathan Smith
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA 91010
| | - Robert Henning
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, Lemont, IL 60439
| | - Vukica Srajer
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, Lemont, IL 60439
| | - Doeke R. Hekstra
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Mark A. Wilson
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588
| |
Collapse
|
9
|
Faure C, Min Ng Y, Belle C, Soler-Lopez M, Khettabi L, Saïdi M, Berthet N, Maresca M, Philouze C, Rachidi W, Réglier M, du Moulinet d'Hardemare A, Jamet H. Interactions of Phenylalanine Derivatives with Human Tyrosinase: Lessons from Experimental and Theoretical tudies. Chembiochem 2024; 25:e202400235. [PMID: 38642076 DOI: 10.1002/cbic.202400235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/22/2024]
Abstract
The pigmentation of the skin, modulated by different actors in melanogenesis, is mainly due to the melanins (protective pigments). In humans, these pigments' precursors are synthetized by an enzyme known as tyrosinase (TyH). The regulation of the enzyme activity by specific modulators (inhibitors or activators) can offer a means to fight hypo- and hyper-pigmentations responsible for medical, psychological and societal handicaps. Herein, we report the investigation of phenylalanine derivatives as TyH modulators. Interacting with the binuclear copper active site of the enzyme, phenylalanine derivatives combine effects induced by combination with known resorcinol inhibitors and natural substrate/intermediate (amino acid part). Computational studies including docking, molecular dynamics and free energy calculations combined with biological activity assays on isolated TyH and in human melanoma MNT-1 cells, and X-ray crystallography analyses with the TyH analogue Tyrp1, provide conclusive evidence of the interactions of phenylalanine derivatives with human tyrosinase. In particular, our findings indicate that an analogue of L-DOPA, namely (S)-3-amino-tyrosine, stands out as an amino phenol derivative with inhibitory properties against TyH.
Collapse
Affiliation(s)
- Clarisse Faure
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| | - Yi Min Ng
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38053, Grenoble, France
| | - Catherine Belle
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| | - Montserrat Soler-Lopez
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38053, Grenoble, France
| | - Lyna Khettabi
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38053, Grenoble, France
| | - Mélissa Saïdi
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38053, Grenoble, France
| | - Nathalie Berthet
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| | - Marc Maresca
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France)
| | - Christian Philouze
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| | - Walid Rachidi
- IRIG-BGE U1038, INSERM, Univ. Grenoble Alpes, Biomics, 38054, Grenoble, France
| | - Marius Réglier
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France)
| | | | - Hélène Jamet
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| |
Collapse
|
10
|
Beck J, Shanmugaratnam S, Höcker B. Diversifying de novo TIM barrels by hallucination. Protein Sci 2024; 33:e5001. [PMID: 38723111 PMCID: PMC11081422 DOI: 10.1002/pro.5001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024]
Abstract
De novo protein design expands the protein universe by creating new sequences to accomplish tailor-made enzymes in the future. A promising topology to implement diverse enzyme functions is the ubiquitous TIM-barrel fold. Since the initial de novo design of an idealized four-fold symmetric TIM barrel, the family of de novo TIM barrels is expanding rapidly. Despite this and in contrast to natural TIM barrels, these novel proteins lack cavities and structural elements essential for the incorporation of binding sites or enzymatic functions. In this work, we diversified a de novo TIM barrel by extending multiple βα-loops using constrained hallucination. Experimentally tested designs were found to be soluble upon expression in Escherichia coli and well-behaved. Biochemical characterization and crystal structures revealed successful extensions with defined α-helical structures. These diversified de novo TIM barrels provide a framework to explore a broad spectrum of functions based on the potential of natural TIM barrels.
Collapse
Affiliation(s)
- Julian Beck
- Department of BiochemistryUniversity of BayreuthBayreuthGermany
| | | | - Birte Höcker
- Department of BiochemistryUniversity of BayreuthBayreuthGermany
| |
Collapse
|
11
|
Hudspeth J, Rogge K, Dörner S, Müll M, Hoffmeister D, Rupp B, Werten S. Methyl transfer in psilocybin biosynthesis. Nat Commun 2024; 15:2709. [PMID: 38548735 PMCID: PMC10978996 DOI: 10.1038/s41467-024-46997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
Psilocybin, the natural hallucinogen produced by Psilocybe ("magic") mushrooms, holds great promise for the treatment of depression and several other mental health conditions. The final step in the psilocybin biosynthetic pathway, dimethylation of the tryptophan-derived intermediate norbaeocystin, is catalysed by PsiM. Here we present atomic resolution (0.9 Å) crystal structures of PsiM trapped at various stages of its reaction cycle, providing detailed insight into the SAM-dependent methylation mechanism. Structural and phylogenetic analyses suggest that PsiM derives from epitranscriptomic N6-methyladenosine writers of the METTL16 family, which is further supported by the observation that bound substrates physicochemically mimic RNA. Inherent limitations of the ancestral monomethyltransferase scaffold hamper the efficiency of psilocybin assembly and leave PsiM incapable of catalysing trimethylation to aeruginascin. The results of our study will support bioengineering efforts aiming to create novel variants of psilocybin with improved therapeutic properties.
Collapse
Affiliation(s)
- Jesse Hudspeth
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Chemistry, Colorado School of Mines, Golden, CO, USA
| | - Kai Rogge
- Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
- Research Group Pharmaceutical Microbiology, Leibniz Institute of Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Sebastian Dörner
- Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
- Research Group Pharmaceutical Microbiology, Leibniz Institute of Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Maximilian Müll
- Research Group Biosynthetic Design of Natural Products, Leibniz Institute of Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Dirk Hoffmeister
- Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
- Research Group Pharmaceutical Microbiology, Leibniz Institute of Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Bernhard Rupp
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- k.-k. Hofkristallamt, San Diego, California, USA
| | - Sebastiaan Werten
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
12
|
Dugelay C, Gueguen-Chaignon V, Terradot L. Structural Analyses of Bacterial Effectors by X-Ray Crystallography. Methods Mol Biol 2024; 2715:485-502. [PMID: 37930546 DOI: 10.1007/978-1-0716-3445-5_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
X-ray crystallography is a method of choice to determine and analyze protein structures. Although large complexes are challenging to crystallize and cryo-electron microscopy is thus better suited for these, crystallography can still be efficient in solving structures of single components of secretion systems or effectors. Many of the different steps leading to structure determination by X-ray crystallography have been automatized. Here, we describe a generic approach to obtain crystals, solve the structure of a given protein, and perform a preliminary analysis, highlighting novel and efficient possibilities offered by automatization and contribution of Alpha Fold 2 structure prediction.
Collapse
Affiliation(s)
- Chloé Dugelay
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, UMR5086, Lyon, France
| | - Virginie Gueguen-Chaignon
- Protein Science Facility, SFR Biosciences, Centre National de la Recherche Scientifique UAR3444, Université de Lyon, Lyon, France
| | - Laurent Terradot
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, UMR5086, Lyon, France.
| |
Collapse
|
13
|
Ozgulbas DY, Jensen D, Butler R, Vescovi R, Foster IT, Irvin M, Nakaye Y, Chu M, Dufresne EM, Seifert S, Babnigg G, Ramanathan A, Zhang Q. Robotic pendant drop: containerless liquid for μs-resolved, AI-executable XPCS. LIGHT, SCIENCE & APPLICATIONS 2023; 12:196. [PMID: 37596264 PMCID: PMC10439219 DOI: 10.1038/s41377-023-01233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 08/20/2023]
Abstract
The dynamics and structure of mixed phases in a complex fluid can significantly impact its material properties, such as viscoelasticity. Small-angle X-ray Photon Correlation Spectroscopy (SA-XPCS) can probe the spontaneous spatial fluctuations of the mixed phases under various in situ environments over wide spatiotemporal ranges (10-6-103 s /10-10-10-6 m). Tailored material design, however, requires searching through a massive number of sample compositions and experimental parameters, which is beyond the bandwidth of the current coherent X-ray beamline. Using 3.7-μs-resolved XPCS synchronized with the clock frequency at the Advanced Photon Source, we demonstrated the consistency between the Brownian dynamics of ~100 nm diameter colloidal silica nanoparticles measured from an enclosed pendant drop and a sealed capillary. The electronic pipette can also be mounted on a robotic arm to access different stock solutions and create complex fluids with highly-repeatable and precisely controlled composition profiles. This closed-loop, AI-executable protocol is applicable to light scattering techniques regardless of the light wavelength and optical coherence, and is a first step towards high-throughput, autonomous material discovery.
Collapse
Affiliation(s)
- Doga Yamac Ozgulbas
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Don Jensen
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Rory Butler
- Departement of Computer Science, University of Chicago, 5801 S Ellis Ave, Chicago, IL, 60637, USA
| | - Rafael Vescovi
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Ian T Foster
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Michael Irvin
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yasukazu Nakaye
- XRD Design and Engineering Department, Rigaku Corporation 3-9-12 Matsubara-cho, Akishima-shi, Tokyo, 196-8666, Japan
| | - Miaoqi Chu
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Eric M Dufresne
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Soenke Seifert
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Gyorgy Babnigg
- Bioscience Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Arvind Ramanathan
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
| | - Qingteng Zhang
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
| |
Collapse
|
14
|
5-(4-Nitrophenyl)furan-2-carboxylic Acid. MOLBANK 2022. [DOI: 10.3390/m1515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ever-evolving research in the field of antitubercular agents has led to the identification of several new potential drug classes. Among them, 5-phenyl-furan-2-carboxylic acids have emerged as innovative potential therapeutics, targeting iron acquisition in mycobacterial species. In our efforts to characterize the molecular interactions between these compounds and their protein target (MbtI from M. tuberculosis) by means of co-crystallization experiments, we unexpectedly obtained the structure of 5-(4-nitrophenyl)furan-2-carboxylic acid (1). Herein, we describe the preparation of the compound and its analysis by 1H NMR, 13C NMR, HRMS, and SC-XRD.
Collapse
|
15
|
Zielinski KA, Prester A, Andaleeb H, Bui S, Yefanov O, Catapano L, Henkel A, Wiedorn MO, Lorbeer O, Crosas E, Meyer J, Mariani V, Domaracky M, White TA, Fleckenstein H, Sarrou I, Werner N, Betzel C, Rohde H, Aepfelbacher M, Chapman HN, Perbandt M, Steiner RA, Oberthuer D. Rapid and efficient room-temperature serial synchrotron crystallography using the CFEL TapeDrive. IUCRJ 2022; 9:778-791. [PMID: 36381150 PMCID: PMC9634612 DOI: 10.1107/s2052252522010193] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 05/22/2023]
Abstract
Serial crystallography at conventional synchrotron light sources (SSX) offers the possibility to routinely collect data at room temperature using micrometre-sized crystals of biological macromolecules. However, SSX data collection is not yet as routine and currently takes significantly longer than the standard rotation series cryo-crystallography. Thus, its use for high-throughput approaches, such as fragment-based drug screening, where the possibility to measure at physio-logical temperatures would be a great benefit, is impaired. On the way to high-throughput SSX using a conveyor belt based sample delivery system - the CFEL TapeDrive - with three different proteins of biological relevance (Klebsiella pneumoniae CTX-M-14 β-lactamase, Nectria haematococca xylanase GH11 and Aspergillus flavus urate oxidase), it is shown here that complete datasets can be collected in less than a minute and only minimal amounts of sample are required.
Collapse
Affiliation(s)
- Kara A Zielinski
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Andreas Prester
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Hina Andaleeb
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestr. 85, 22603 Hamburg, Germany
| | - Soi Bui
- Randall Centre of Cell and Molecular Biophysics, King’s College London, United Kingdom
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Lucrezia Catapano
- Randall Centre of Cell and Molecular Biophysics, King’s College London, United Kingdom
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Alessandra Henkel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Max O. Wiedorn
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Olga Lorbeer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Eva Crosas
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Jan Meyer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Valerio Mariani
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Martin Domaracky
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Thomas A. White
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Holger Fleckenstein
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Iosifina Sarrou
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Nadine Werner
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestr. 85, 22603 Hamburg, Germany
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestr. 85, 22603 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Martin Aepfelbacher
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Henry N. Chapman
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Markus Perbandt
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestr. 85, 22603 Hamburg, Germany
| | - Roberto A. Steiner
- Randall Centre of Cell and Molecular Biophysics, King’s College London, United Kingdom
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, Padova 35131, Italy
| | - Dominik Oberthuer
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| |
Collapse
|
16
|
Foos N, Rizk M, Nanao MH. Single-support serial isomorphous replacement phasing. Acta Crystallogr D Struct Biol 2022; 78:716-724. [PMID: 35647919 PMCID: PMC9159287 DOI: 10.1107/s2059798322003977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/11/2022] [Indexed: 11/11/2022] Open
Abstract
The use of single isomorphous replacement (SIR) has become less widespread due to difficulties in sample preparation and the identification of isomorphous native and derivative data sets. Non-isomorphism becomes even more problematic in serial experiments, because it adds natural inter-crystal non-isomorphism to heavy-atom-soaking-induced non-isomorphism. Here, a method that can successfully address these issues (and indeed can benefit from differences in heavy-atom occupancy) and additionally significantly simplifies the SIR experiment is presented. A single heavy-atom soak into a microcrystalline slurry is performed, followed by automated serial data collection of partial data sets. This produces a set of data collections with a gradient of heavy-atom occupancies, which are reflected in differential merging statistics. These differences can be exploited by an optimized genetic algorithm to segregate the pool of data sets into `native' and `derivative' groups, which can then be used to successfully determine phases experimentally by SIR.
Collapse
Affiliation(s)
- Nicolas Foos
- Structural Biology, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Mahmoud Rizk
- Structural Biology, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Max H. Nanao
- Structural Biology, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
17
|
Nanao M, Basu S, Zander U, Giraud T, Surr J, Guijarro M, Lentini M, Felisaz F, Sinoir J, Morawe C, Vivo A, Beteva A, Oscarsson M, Caserotto H, Dobias F, Flot D, Nurizzo D, Gigmes J, Foos N, Siebrecht R, Roth T, Theveneau P, Svensson O, Papp G, Lavault B, Cipriani F, Barrett R, Clavel C, Leonard G. ID23-2: an automated and high-performance microfocus beamline for macromolecular crystallography at the ESRF. Corrigendum. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:928-929. [PMID: 35511026 PMCID: PMC9070714 DOI: 10.1107/s1600577522002818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A revised version of Table 2 of Nanao et al. [J. Synchrotron Rad. (2022). 29, 581-590] is provided.
Collapse
Affiliation(s)
- Max Nanao
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Shibom Basu
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Ulrich Zander
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Thierry Giraud
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - John Surr
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Matias Guijarro
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Mario Lentini
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Franck Felisaz
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Jeremy Sinoir
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Christian Morawe
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Amparo Vivo
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Antonia Beteva
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Marcus Oscarsson
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Hugo Caserotto
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Fabien Dobias
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - David Flot
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Didier Nurizzo
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Jonathan Gigmes
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Nicolas Foos
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | | | - Thomas Roth
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Pascal Theveneau
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Olof Svensson
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Gergely Papp
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | | | - Florent Cipriani
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Ray Barrett
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Carole Clavel
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Gordon Leonard
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| |
Collapse
|