1
|
Larsen C, Ledbetter K, Nascimento DR, Biasin E, Qureshi M, Nowak S, Sokaras D, Govind N, Cordones AA. Metal-Ligand Covalency in the Valence Excited States of Metal Dithiolenes Revealed by S 1s3p Resonant Inelastic X-ray Scattering. J Am Chem Soc 2024; 146. [PMID: 39377493 PMCID: PMC11487610 DOI: 10.1021/jacs.4c11667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Metallo dithiolene complexes with biological and catalytic relevance are well-known for having strong metal-ligand covalency, which dictates their valence electronic structures. We present the resonant sulfur Kβ (1s3p) X-ray emission spectroscopy (XES) for a series of Ni and Cu bis(dithiolene) complexes to reveal the ligand sulfur contributions to both the occupied and unoccupied valence orbitals. While S K-edge X-ray absorption spectroscopy played a critical role in identifying the covalency of the unoccupied orbitals of metal dithiolenes, the present focus on XES explores the occupied density of states. For a series of [Cu(mnt)2]n- and [Ni(mnt)2]n- anions and dianions, a comparison of the nonresonant and resonant S Kβ XES spectra highlights the dramatic improvement in spectral resolution and corresponding ability to differentiate subtle changes in occupied electronic structure across the series. Furthermore, the use of resonant inelastic X-ray scattering (RIXS) probes the valence excited states and the core-valence couplings of the complexes. By employing a theoretical approach based on time-dependent density functional theory to interpret the RIXS spectra, we reveal how metal-ligand covalency influences the excited state energies and covalencies. We identify the low energy excited states as having the same symmetry as the nominal "ligand field" or "d-d" states that typically dominate the photophysics of 3d metal complexes but with significant metal-ligand charge transfer character dictated by their covalency. These results suggest that strong metal-ligand covalency can be used to influence the charge-transfer photochemistry of first row transition metal complexes.
Collapse
Affiliation(s)
- Christopher
B. Larsen
- Stanford
PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Kathryn Ledbetter
- Stanford
PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Daniel R. Nascimento
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Elisa Biasin
- Stanford
PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Muhammad Qureshi
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Stanisław
H. Nowak
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Niranjan Govind
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Amy A. Cordones
- Stanford
PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
2
|
Rana A, Peredkov S, Behrens M, DeBeer S. Probing the Local Environment in Potassium Salts and Potassium-Promoted Catalysts by Potassium Valence-to-Core X-ray Emission Spectroscopy. Inorg Chem 2024; 63:16217-16223. [PMID: 39162299 PMCID: PMC11372750 DOI: 10.1021/acs.inorgchem.4c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Potassium plays an important role in biology as well as a promoter in heterogeneous catalysis. There are, however, limited characterization techniques for potassium available in the literature. This study elucidates the potential of element-selective X-ray emission spectroscopy (XES) for characterizing the coordination environment and the electronic properties of potassium. A series of XES measurements were conducted, primarily focusing on the VtC transition (Kβ2,5) of potassium halides (KCl, KBr, and KI) and oxide-bound potassium salts, including potassium nitrate (KNO3) and potassium carbonate (K2CO3). Across the series of potassium halides, the VtC transition energy is observed to increase, as accurately reproduced by TDDFT calculations. Molecular orbital analysis suggests that the Kβ2,5 transition is primarily derived from halide np contributions, with the primary factor influencing the energy shift being the metal-ligand distances. For oxide ligands, an additional Kβ″ transition appears alongside the Kβ2,5, which is attributed to a low-energy ligand ns, as elucidated by theoretical calculations. Finally, the XES spectra of two potassium-promoted catalysts for ammonia decomposition/synthesis were measured. These spectra show that potassium within the catalyst is distinct from other K salts in the VtC region, which could be promising for understanding the role of potassium as an electronic promoter.
Collapse
Affiliation(s)
- Atanu Rana
- Max Planck Institute for Chemical Energy Conversion, Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion, Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Malte Behrens
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118 Kiel, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
Gera R, De P, Singh KK, Jannuzzi SAV, Mohanty A, Velasco L, Kulbir, Kumar P, Marco JF, Nagarajan K, Pecharromán C, Rodríguez-Pascual PM, DeBeer S, Moonshiram D, Gupta SS, Dasgupta J. Trapping an Elusive Fe(IV)-Superoxo Intermediate Inside a Self-Assembled Nanocage in Water at Room Temperature. J Am Chem Soc 2024; 146:21729-21741. [PMID: 39078020 DOI: 10.1021/jacs.4c05849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Molecular cavities that mimic natural metalloenzymes have shown the potential to trap elusive reaction intermediates. Here, we demonstrate the formation of a rare yet stable Fe(IV)-superoxo intermediate at room temperature subsequent to dioxygen binding at the Fe(III) site of a (Et4N)2[FeIII(Cl)(bTAML)] complex confined inside the hydrophobic interior of a water-soluble Pd6L412+ nanocage. Using a combination of electron paramagnetic resonance, Mössbauer, Raman/IR vibrational, X-ray absorption, and emission spectroscopies, we demonstrate that the cage-encapsulated complex has a Fe(IV) oxidation state characterized by a stable S = 1/2 spin state and a short Fe-O bond distance of ∼1.70 Å. We find that the O2 reaction in confinement is reversible, while the formed Fe(IV)-superoxo complex readily reacts when presented with substrates having weak C-H bonds, highlighting the lability of the O-O bond. We envision that such optimally trapped high-valent superoxos can show new classes of reactivities catalyzing both oxygen atom transfer and C-H bond activation reactions.
Collapse
Affiliation(s)
- Rahul Gera
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
- Department of Education in Science and Mathematics, Regional Institute of Education - Mysuru, NCERT, Mysuru 570006, India
| | - Puja De
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Kundan K Singh
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India
- Chemistry Department, Indian Institute of Technology, Dharwad 580007, India
| | - Sergio A V Jannuzzi
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr 45470, Germany
| | - Aisworika Mohanty
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Lucia Velasco
- Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Kulbir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - J F Marco
- Instituto de Quimica Fisica Blas Cabrera, Consejo Superior de Investigaciones Científicas, Serrano 119, Madrid 28006, Spain
| | - Kalaivanan Nagarajan
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Carlos Pecharromán
- Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - P M Rodríguez-Pascual
- Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Serena DeBeer
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr 45470, Germany
| | - Dooshaye Moonshiram
- Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
4
|
Roemelt C, Peredkov S, Neese F, Roemelt M, DeBeer S. Valence-to-core X-ray emission spectroscopy of transition metal tetrahalides: mechanisms governing intensities. Phys Chem Chem Phys 2024; 26:19960-19975. [PMID: 38994715 DOI: 10.1039/d4cp00967c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Valence-to-core (VtC) X-ray emission spectroscopy offers the opportunity to probe the valence electronic structure of a system filtered by selection rules. From this, the nature of its ligands can be inferred. While a preceding 1s ionization creates a core hole, in VtC XES this core hole is filled with electrons from mainly ligand based orbitals. In this work, we investigated the trends in the observed VtC intensities for a series of transition metal halides, which spans the first row transition metals from manganese to copper. Further, with the aid of computational studies, we corroborated these trends and identified the mechanisms and factors that dictate the observed intensity trends. Small amounts of metal p contribution to the ligand orbitals are known to give rise to intensity of a VtC transition. By employing an LCAO (linear combination of atomic orbitals) approach, we were able to assess the amount of metal p contribution to the ligand molecular orbitals, as well as the role of the transition dipole moment and correlate these factors to the experimentally observed intensities. Finally, by employing an ano (atomic natural orbital) basis set within the calculations, the nature of the metal p contribution (3p vs. 4p) was qualitatively assessed and their trends discussed within the same transition metal halide series.
Collapse
Affiliation(s)
- Christina Roemelt
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Michael Roemelt
- Humboldt University Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
5
|
Geoghegan BL, Bilyj JK, Bernhardt PV, DeBeer S, Cutsail GE. X-ray absorption and emission spectroscopy of N 2S 2 Cu(II)/(III) complexes. Dalton Trans 2024; 53:7828-7838. [PMID: 38624161 DOI: 10.1039/d4dt00085d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
This study investigates the influence of ligand charge on transition energies in a series of CuN2S2 complexes based on dithiocarbazate Schiff base ligands using Cu K-edge X-ray absorption spectroscopy (XAS) and Kβ valence-to-core (VtC) X-ray emission spectroscopy (XES). By comparing the formally Cu(II) complexes [CuII(HL1)] (HL12- = dimethyl pentane-2,4-diylidenebis[carbonodithiohydrazonate]) and [CuII(HL2)] (HL22- = dibenzyl pentane-2,4-diylidenebis[carbonodithiohydrazonate]) and the formally Cu(III) complex [CuIII(L2)], distinct changes in transition energies are observed, primarily attributed to the metal oxidation state. Density functional theory (DFT) calculations demonstrate how an increased negative charge on the deprotonated L23- ligand stabilizes the Cu(III) center through enhanced charge donation, modulating the core transition energies. Overall, significant shifts to higher energies are noted upon metal oxidation, emphasizing the importance of scrutinizing ligand structure in XAS/VtC XES analysis. The data further support the redox-innocent role of the Schiff base ligands and underscore the criticality of ligand protonation levels in future spectroscopic studies, particularly for catalytic intermediates. The combined XAS-VtC XES methodology validates the Cu(III) oxidation state assignment while offering insights into ligand protonation effects on core-level spectroscopic transitions.
Collapse
Affiliation(s)
- Blaise L Geoghegan
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117 Essen, Germany
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ, London, UK
| | - Jessica K Bilyj
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117 Essen, Germany
| |
Collapse
|