1
|
Dramé-Maigné A, Espada R, McCallum G, Sieskind R, Gines G, Rondelez Y. In Vitro Enzyme Self-Selection Using Molecular Programs. ACS Synth Biol 2024; 13:474-484. [PMID: 38206581 DOI: 10.1021/acssynbio.3c00385] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Directed evolution provides a powerful route for in vitro enzyme engineering. State-of-the-art techniques functionally screen up to millions of enzyme variants using high throughput microfluidic sorters, whose operation remains technically challenging. Alternatively, in vitro self-selection methods, analogous to in vivo complementation strategies, open the way to even higher throughputs, but have been demonstrated only for a few specific activities. Here, we leverage synthetic molecular networks to generalize in vitro compartmentalized self-selection processes. We introduce a programmable circuit architecture that can link an arbitrary target enzymatic activity to the replication of its encoding gene. Microencapsulation of a bacterial expression library with this autonomous selection circuit results in the single-step and screening-free enrichment of genetic sequences coding for programmed enzymatic phenotypes. We demonstrate the potential of this approach for the nicking enzyme Nt.BstNBI (NBI). We applied autonomous selection conditions to enrich for thermostability or catalytic efficiency, manipulating up to 107 microcompartments and 5 × 105 variants at once. Full gene reads of the libraries using nanopore sequencing revealed detailed mutational activity landscapes, suggesting a key role of electrostatic interactions with DNA in the enzyme's turnover. The most beneficial mutations, identified after a single round of self-selection, provided variants with, respectively, 20 times and 3 °C increased activity and thermostability. Based on a modular molecular programming architecture, this approach does not require complex instrumentation and can be repurposed for other enzymes, including those that are not related to DNA chemistry.
Collapse
Affiliation(s)
- Adèle Dramé-Maigné
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Rocío Espada
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Giselle McCallum
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Rémi Sieskind
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Guillaume Gines
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Yannick Rondelez
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| |
Collapse
|
2
|
Abrosimova LA, Samsonova AR, Perevyazova TA, Yunusova AK, Artyukh RI, Romanova EA, Zheleznaya LA, Oretskaya TS, Kubareva EA. The Role of Cysteine Residues in the Interaction of Nicking Endonuclease BspD6I with DNA. Mol Biol 2020. [DOI: 10.1134/s0026893320040020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Artyukh RI, Kachalova GS, Yunusova AK, Fatkhullin BF, Atanasov BP, Perevyazova TA, Popov AN, Gabdulkhakov AG, Zheleznaya LA. The key role of E418 carboxyl group in the formation of Nt.BspD6I nickase active site: Structural and functional properties of Nt.BspD6I E418A mutant. J Struct Biol 2020; 210:107508. [PMID: 32298813 DOI: 10.1016/j.jsb.2020.107508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 11/29/2022]
Abstract
The mutated nickase Nt.BspD6I E418A has been obtained by site-directed mutagenesis. The purified protein has been crystallized, and its spatial structure has been determined at 2.45 Å resolution. An analysis of the crystal structures of the wild-type and mutated nickase have shown that the elimination of a carboxyl group due to the E418A mutation initiates marked conformational changes in both the N-terminal recognition domain and the C-terminal catalytic domain of nickase and insignificantly affects its linker domain. This is supported by changes in the functional properties of mutated nickase: an increase in the oligomerization capacity in the presence of a substrate, a reduction in the capacity to bind a substrate, and complete loss of catalytic activity.
Collapse
Affiliation(s)
- Rimma I Artyukh
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | - Galina S Kachalova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Alfiya K Yunusova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Bulat F Fatkhullin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Boris P Atanasov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Tatyana A Perevyazova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | | | - Azat G Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Ludmila A Zheleznaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
4
|
Sekerina SA, Grishin AV, Riazanova AI, Artiukh RI, Rogulin EA, Iunusova AK, Oretskaia TS, Zheleznaia LA, Kubareva EA. [Oligomerization of site-specific nicking endonuclease BspD6I at high protein concentrations]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013. [PMID: 23189557 DOI: 10.1134/s1068162012040127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ability of site-specific nickase BspD6I (Nt.BspD6I) to oligomerize at concentrations > or = 0.5 microM (> or = 0.035 mg/mL) is studied. Three states of Nt.BspD6I are registered via electrophoretic studies both in the presence and in the absence of DNA. Estimation of their molecular mass allows assigning them as a monomer, a dimer and a trimer. Both dimeric and monomeric Nt.BspD6I are shown to hydrolyze its DNA substrate with the identical specificity. Calculation of the electrostatic potential distribution on the Nt.BspD6I globule surface shows that the protein molecule is a dipole. The Nt. BspD6I oligomeric forms are likely to be the result of ionic protein interactions.
Collapse
|
5
|
Structural analysis of the heterodimeric type IIS restriction endonuclease R.BspD6I acting as a complex between a monomeric site-specific nickase and a catalytic subunit. J Mol Biol 2008; 384:489-502. [PMID: 18835275 DOI: 10.1016/j.jmb.2008.09.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/10/2008] [Accepted: 09/16/2008] [Indexed: 11/20/2022]
Abstract
The heterodimeric restriction endonuclease R.BspD6I from Bacillus species D6 recognizes a pseudosymmetric sequence and cuts both DNA strands outside the recognition sequence. The large subunit, Nt.BspD6I, acts as a type IIS site-specific monomeric nicking endonuclease. The isolated small subunit, ss.BspD6I, does not bind DNA and is not catalytically active. We solved the crystal structures of Nt.BspD6I and ss.BspD6I at high resolution. Nt.BspD6I consists of three domains, two of which exhibit structural similarity to the recognition and cleavage domains of FokI. ss.BspD6I has a fold similar to that of the cleavage domain of Nt.BspD6I, each containing a PD-(D/E)XK motif and a histidine as an additional putative catalytic residue. In contrast to the DNA-bound FokI structure, in which the cleavage domain is rotated away from the DNA, the crystal structure of Nt.BspD6I shows the recognition and cleavage domains in favorable orientations for interactions with DNA. Docking models of complexes of Nt.BspD6I and R.BspD6I with cognate DNA were constructed on the basis of structural similarity to individual domains of FokI, R.BpuJI and HindIII. A three-helix bundle forming an interdomain linker in Nt.BspD6I acts as a rigid spacer adjusting the orientations of the spatially separated domains to match the distance between the recognition and cleavage sites accurately.
Collapse
|
6
|
Orlowski J, Bujnicki JM. Structural and evolutionary classification of Type II restriction enzymes based on theoretical and experimental analyses. Nucleic Acids Res 2008; 36:3552-69. [PMID: 18456708 PMCID: PMC2441816 DOI: 10.1093/nar/gkn175] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
For a very long time, Type II restriction enzymes (REases) have been a paradigm of ORFans: proteins with no detectable similarity to each other and to any other protein in the database, despite common cellular and biochemical function. Crystallographic analyses published until January 2008 provided high-resolution structures for only 28 of 1637 Type II REase sequences available in the Restriction Enzyme database (REBASE). Among these structures, all but two possess catalytic domains with the common PD-(D/E)XK nuclease fold. Two structures are unrelated to the others: R.BfiI exhibits the phospholipase D (PLD) fold, while R.PabI has a new fold termed 'half-pipe'. Thus far, bioinformatic studies supported by site-directed mutagenesis have extended the number of tentatively assigned REase folds to five (now including also GIY-YIG and HNH folds identified earlier in homing endonucleases) and provided structural predictions for dozens of REase sequences without experimentally solved structures. Here, we present a comprehensive study of all Type II REase sequences available in REBASE together with their homologs detectable in the nonredundant and environmental samples databases at the NCBI. We present the summary and critical evaluation of structural assignments and predictions reported earlier, new classification of all REase sequences into families, domain architecture analysis and new predictions of three-dimensional folds. Among 289 experimentally characterized (not putative) Type II REases, whose apparently full-length sequences are available in REBASE, we assign 199 (69%) to contain the PD-(D/E)XK domain. The HNH domain is the second most common, with 24 (8%) members. When putative REases are taken into account, the fraction of PD-(D/E)XK and HNH folds changes to 48% and 30%, respectively. Fifty-six characterized (and 521 predicted) REases remain unassigned to any of the five REase folds identified so far, and may exhibit new architectures. These enzymes are proposed as the most interesting targets for structure determination by high-resolution experimental methods. Our analysis provides the first comprehensive map of sequence-structure relationships among Type II REases and will help to focus the efforts of structural and functional genomics of this large and biotechnologically important class of enzymes.
Collapse
Affiliation(s)
- Jerzy Orlowski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | | |
Collapse
|
7
|
Kachalova GS, Yunusova AK, Artyukh RI, Rogulin EA, Perevyazova TA, Zheleznaya LA, Matvienko NI, Bartunik HD. Crystallization and preliminary X-ray diffraction analysis of the small subunit of the heterodimeric restriction endonuclease R.BspD6I. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:795-7. [PMID: 17768358 PMCID: PMC2376331 DOI: 10.1107/s174430910704016x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 08/13/2007] [Indexed: 05/17/2023]
Abstract
The heterodimeric restriction endonuclease R.BspD6I is composed of a small subunit with a cleavage site and a large subunit, containing a recognition domain and a cleavage domain, that may function separately as a monomeric nicking endonuclease. Here, the crystallization of the small subunit and diffraction data collection to 1.5 A resolution are reported.
Collapse
Affiliation(s)
| | - Alfiya K. Yunusova
- Institute of Theoretical and Experimental Biophysics, Pushchino 142290, Russia
| | - Rimma I. Artyukh
- Institute of Theoretical and Experimental Biophysics, Pushchino 142290, Russia
| | - Eugeny A. Rogulin
- Institute of Theoretical and Experimental Biophysics, Pushchino 142290, Russia
| | | | | | | | - Hans D. Bartunik
- Max-Planck Unit for Structural Molecular Biology, Hamburg 22607, Germany
- Correspondence e-mail:
| |
Collapse
|