1
|
Abo Qoura L, Balakin KV, Hoffman RM, Pokrovsky VS. The potential of methioninase for cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189122. [PMID: 38796027 DOI: 10.1016/j.bbcan.2024.189122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Cancer cells are addicted to L-methionine (L-Met) and have a much greater requirement for L-Met than normal cells due to excess transmethylation, termed the Hoffman effect. By targeting this vulnerability through dietary restriction of L-Met, researchers have been able to achieve promising results in inhibiting tumor growth and eradicating cancer cells. Methioninase (EC 4.4.1.11; METase) catalyzes the transformation of L-Met into α-ketobutyrate, ammonia, and methanethiol. The use of METase was initially limited due to its poor stability in vivo, high immunogenicity, and enzyme-induced inactivating antibodies. These issues could be partially resolved by PEGylation, encapsulation in erythrocytes, and various site-directed mutagenesis. The big breakthrough came when it was discovered that METase is effectively administered orally. The enzyme L-asparaginase is approved by the FDA for treatment of acute lymphoblastic leukemia. METase has more potential as a therapeutic since addiction to L-Met is a general and fundamental hallmark of cancer.
Collapse
Affiliation(s)
- Louay Abo Qoura
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), 117198 Moscow, Russia; N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, 115478 Moscow, Russia
| | | | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA 92111, USA; Department of Surgery, University of California, San Diego, La Jolla, CA 92037-7400, USA
| | - Vadim S Pokrovsky
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), 117198 Moscow, Russia; N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, 115478 Moscow, Russia.
| |
Collapse
|
2
|
Abou Zeid AA, Mohamed AH, El-Sayed AS, EL-Shawadfy AM. Biochemical, molecular and anti-tumor characterization of L-methionine gamma lyase produced by local Pseudomonas sp. in Egypt. Saudi J Biol Sci 2023; 30:103682. [PMID: 37305655 PMCID: PMC10248269 DOI: 10.1016/j.sjbs.2023.103682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
A soil inhabiting Pseudomonas sp. has been examined for producing L- methionine gamma-lyase enzyme. The identity of the tested bacteria was verified by VITEK2, and MALDI-TOF analysis in addition to molecular confirmation by 16S rDNA sequence and submitted in Genbank under accession number ON993898.1. Production of the targeted enzyme was done using a commercial medium including L-methionine, as the main substrate. This obtained enzyme was precipitated using acetone (1:1v/v) followed by purification with Sephadex G100 and sepharose columns. The specific activity of the purified enzyme (105.8 µmol/ mg/min) increased by 1.89 folds after the purification steps. The peptide fingerprint of the native MGL was verified from the proteomics analysis, with identical conserved active site domains with database-deposited MGLs. The molecular mass of the pure MGL denatured subunit was (>40 kDa) and that of the native enzyme was (>150 kDa) ensuring their homotetrameric identity. The purified enzyme showed absorption spectra at 280 nm and 420 nm for the apo-MGL and PLP coenzyme, respectively. Amino acids suicide analogues analysis by DTNB, hydroxylamine, iodoacetate, MBTH, mercaptoethanol and guanidine thiocyanate reduced the relative activity of purified MGL. From the kinetic properties, the catalytic effectiveness (Kcat/km) of Pseudomonas sp. MGL was 10.8 mM -1 S-1 for methionine and 5.51 mM -1 S-1 for cysteine, respectively. The purified MGL showed highly significant antiproliferative activity towards the liver carcinoma cell line (HEPG-2) and breast carcinoma cell line (MCF-7) with half inhibitory concentration values (IC50) 7.23 U/ml and 21.14 U/ml, respectively. No obvious signs of toxicity on liver and kidney functions in the examined animal models were observed.
Collapse
Affiliation(s)
- Azza A. Abou Zeid
- Corresponding author at: Botany and Microbiology Deparetment, Faculy of Science, Zagazig University, Zagazig, Egypt.
| | | | | | | |
Collapse
|
3
|
Saito-Nakano Y, Makiuchi T, Tochikura M, Gilchrist CA, Petri WA, Nozaki T. ArfX2 GTPase Regulates Trafficking From the Trans-Golgi to Lysosomes and Is Necessary for Liver Abscess Formation in the Protozoan Parasite Entamoeba histolytica. Front Cell Infect Microbiol 2022; 11:794152. [PMID: 34976870 PMCID: PMC8719317 DOI: 10.3389/fcimb.2021.794152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023] Open
Abstract
Entamoeba histolytica is the causative agent of amoebic dysentery and liver abscess in humans. The parasitic lifestyle and the virulence of the protist require elaborate biological processes, including vesicular traffic and stress management against a variety of reactive oxygen and nitrogen species produced by the host immune response. Although the mechanisms for intracellular traffic of representative virulence factors have been investigated at molecular levels, it remains poorly understood whether and how intracellular traffic is involved in the defense against reactive oxygen and nitrogen species. Here, we demonstrate that EhArfX2, one of the Arf family of GTPases known to be involved in the regulation of vesicular traffic, was identified by comparative transcriptomic analysis of two isogenic strains: an animal-passaged highly virulent HM-1:IMSS Cl6 and in vitro maintained attenuated avirulent strain. EhArfX2 was identified as one of the most highly upregulated genes in the highly virulent strain. EhArfX2 was localized to small vesicle-like structures and largely colocalized with the marker for the trans-Golgi network SNARE, EhYkt6, but neither with the endoplasmic reticulum (ER)-resident chaperon, EhBip, nor the cis-Golgi SNARE, EhSed5, and Golgi-luminal galactosyl transferase, EhGalT. Expression of the dominant-active mutant form of EhArfX2 caused an increase in the number of lysosomes, while expression of the dominant-negative mutant led to a defect in lysosome formation and cysteine protease transport to lysosomes. Expression of the dominant-negative mutant in the virulent E. histolytica strain caused a reduction of the size of liver abscesses in a hamster model. This defect in liver abscess formation was likely at least partially attributed to reduced resistance to nitrosative, but not oxidative stress in vitro. These results showed that the EhArfX2-mediated traffic is necessary for the nitrosative stress response and virulence in the host.
Collapse
Affiliation(s)
- Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Mami Tochikura
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Carol A Gilchrist
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - William A Petri
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Tomoyoshi Nozaki
- Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
4
|
Silva MVDM, Costa ICR, de Souza ROMA, Bornscheuer UT. Biocatalytic Cascade Reaction for the Asymmetric Synthesis of L‐ and D‐Homoalanine. ChemCatChem 2018. [DOI: 10.1002/cctc.201801413] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marcus V. de M. Silva
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryGreifswald University Greifswald 17487 Germany
- Biocatalysis and Organic Synthesis GroupInstitute of ChemistryFederal University of Rio de Janeiro, Rio de Janeiro 21941-909 Brazil
| | - Ingrid C. R. Costa
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryGreifswald University Greifswald 17487 Germany
| | - Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis GroupInstitute of ChemistryFederal University of Rio de Janeiro, Rio de Janeiro 21941-909 Brazil
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryGreifswald University Greifswald 17487 Germany
| |
Collapse
|
5
|
Suganya K, Govindan K, Prabha P, Murugan M. An extensive review on L-methioninase and its potential applications. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Plasma methionine depletion and pharmacokinetic properties in mice of methionine γ-lyase from Citrobacter freundii, Clostridium tetani and Clostridium sporogenes. Biomed Pharmacother 2017; 88:978-984. [PMID: 28178629 DOI: 10.1016/j.biopha.2017.01.127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/21/2017] [Accepted: 01/21/2017] [Indexed: 11/21/2022] Open
Abstract
PK studies were carried out after a single i.v. administration of 500 and 1000 U/kg by measuring of MGL activity in plasma samples. L-methionine concentration was measured by mass spectrometry. After single i.v. injection of 500U/kg the circulating T1/2 of enzymes in mice varies from 73 to 123min. The AUC0-tinf values determined for MGL 500U/kg from C. freundii, C. tetani and C. sporogenes are 8.21±0.28, 9.04±0.33 and 13.88±0.39U/(ml×h), respectively. Comparison of PK parameters of three MGL sources in the dose of 500U/kg indicated the MGL C. sporogenes to have better PK parameters: clearance 0.83(95%CI: 0.779-0.871) - was lower than C. tetanii 1.27(95%CI: 1.18-1.36) and C. freundii 1.39(95%CI: 1.30-1.49). Mice plasma methionine decreased to undetectable level 10min after MGL 1000 U/kg injection. After MGL C. sporogenes 500U/kg injection plasma methionine level completely omitted after 10min till 6h, assuming the sustainability of negligible levels of methionine (<5μM) in plasma of mice for about 6h. The recovery of methionine concentration showed the advantageous efficiency of MGL from C. sporogenes: 95% 0.010-0.022 vs 0.023-0.061 for MGL C. freundii and 0.036-0.056 for MGL C. tetani. There are no significant differences between methionine cleavage after MGL C. tetani and MGL C. sporogenes i.v. injection at all doses. MGL from C. sporogenes may be considered as promising enzyme for further investigation as potential anticancer agent.
Collapse
|
7
|
L-methionase: a therapeutic enzyme to treat malignancies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:506287. [PMID: 25250324 PMCID: PMC4164312 DOI: 10.1155/2014/506287] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/16/2014] [Accepted: 08/12/2014] [Indexed: 12/25/2022]
Abstract
Cancer is an increasing cause of mortality and morbidity throughout the world. L-methionase has potential application against many types of cancers. L-Methionase is an intracellular enzyme in bacterial species, an extracellular enzyme in fungi, and absent in mammals. L-Methionase producing bacterial strain(s) can be isolated by 5,5′-dithio-bis-(2-nitrobenzoic acid) as a screening dye. L-Methionine plays an important role in tumour cells. These cells become methionine dependent and eventually follow apoptosis due to methionine limitation in cancer cells. L-Methionine also plays an indispensable role in gene activation and inactivation due to hypermethylation and/or hypomethylation. Membrane transporters such as GLUT1 and ion channels like Na2+, Ca2+, K+, and Cl− become overexpressed. Further, the α-subunit of ATP synthase plays a role in cancer cells growth and development by providing them enhanced nutritional requirements. Currently, selenomethionine is also used as a prodrug in cancer therapy along with enzyme methionase that converts prodrug into active toxic chemical(s) that causes death of cancerous cells/tissue. More recently, fusion protein (FP) consisting of L-methionase linked to annexin-V has been used in cancer therapy. The fusion proteins have advantage that they have specificity only for cancer cells and do not harm the normal cells.
Collapse
|
8
|
Schmidberger T, Gutmann R, Bayer K, Kronthaler J, Huber R. Advanced online monitoring of cell culture off-gas using proton transfer reaction mass spectrometry. Biotechnol Prog 2014; 30:496-504. [DOI: 10.1002/btpr.1853] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/02/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Timo Schmidberger
- Sandoz GmbH; 6336 Langkampfen Austria
- Dept. of Biotechnology; University of Natural Resources and Life Sciences; 1180 Vienna Austria
| | | | - Karl Bayer
- Dept. of Biotechnology; University of Natural Resources and Life Sciences; 1180 Vienna Austria
| | | | | |
Collapse
|
9
|
Morozova EA, Bazhulina NP, Anufrieva NV, Mamaeva DV, Tkachev YV, Streltsov SA, Timofeev VP, Faleev NG, Demidkina TV. Kinetic and spectral parameters of interaction of Citrobacter freundii methionine γ-lyase with amino acids. BIOCHEMISTRY (MOSCOW) 2010; 75:1272-80. [DOI: 10.1134/s0006297910100093] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Ronda L, Bazhulina NP, Morozova EA, Revtovich SV, Chekhov VO, Nikulin AD, Demidkina TV, Mozzarelli A. Exploring methionine γ-lyase structure-function relationship via microspectrophotometry and X-ray crystallography. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:834-42. [PMID: 20601224 DOI: 10.1016/j.bbapap.2010.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/17/2010] [Accepted: 06/18/2010] [Indexed: 11/26/2022]
Abstract
Pyridoxal 5'-phosphate (PLP) dependent methionine γ-lyase catalyzes the breakdown of L-methionine to α-ketobutyric acid, methanethiol and ammonia. This enzyme, present in anaerobic microorganisms, has biomedical interest both for its activity as antitumor agent, depleting methionine supply in methionine-dependent cancers, and as target in the treatment of human pathogen infections, activating the pro-drug trifluoromethionine. To validate the structure of the enzyme from Citrobacter freundii, crystallized from monomethyl ether polyethylene glycol 2000, for the development of lead compounds, the reactivity of the crystalline enzyme towards L-methionine, substrate analogs and inhibitors was determined by polarized absorption microspectrophotometry. Spectral data were also collected for enzyme crystals, grown in monomethyl ether polyethylene glycol 2000 in the presence of ammonium sulfate. The three-dimensional structure of these enzyme crystals, solved at 1.65Å resolution with R(free) 23.2%, revealed the surprising absence of the aldimine bond between the active site Lys210 and PLP. Different hypothesis are proposed and discussed in the light of spectral and structural data, pointing out to the relevance of the complementarity between X-ray crystallography and single crystal spectroscopy for the understanding of biological mechanisms at molecular level. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.
Collapse
Affiliation(s)
- Luca Ronda
- Department of Biochemistry and Molecular Biology, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Sato D, Nozaki T. Methionine gamma-lyase: The unique reaction mechanism, physiological roles, and therapeutic applications against infectious diseases and cancers. IUBMB Life 2009; 61:1019-28. [DOI: 10.1002/iub.255] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
12
|
Sato D, Karaki T, Shimizu A, Kamei K, Harada S, Nozaki T. Crystallization and preliminary X-ray analysis of L-methionine gamma-lyase 1 from Entamoeba histolytica. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:697-9. [PMID: 18678935 PMCID: PMC2494978 DOI: 10.1107/s1744309108018691] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Accepted: 06/20/2008] [Indexed: 11/10/2022]
Abstract
L-Methionine gamma-lyase (MGL) is a pyridoxal phosphate-dependent enzyme that is involved in the degradation of sulfur-containing amino acids. MGL is an attractive drug target against amoebiasis because the mammalian host of its causative agent Entamoeba histolytica lacks MGL. For the development of anti-amoebic agents based on the structure of MGL, one of two MGL isoenzymes (EhMGL1) was crystallized in the monoclinic space group P2(1), with unit-cell parameters a = 99.12, b = 85.38, c = 115.37 A, beta = 101.82 degrees . The crystals diffract to beyond 2.0 A resolution. The presence of a tetramer in the asymmetric unit (4 x 42.4 kDa) gives a Matthews coefficient of 2.8 A(3) Da(-1) and a solvent content of 56%. The structure was solved by the molecular-replacement method and structure refinement is now in progress.
Collapse
Affiliation(s)
- Dan Sato
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Sato D, Yamagata W, Harada S, Nozaki T. Kinetic characterization of methionine γ-lyases from the enteric protozoan parasite Entamoeba histolytica against physiological substrates and trifluoromethionine, a promising lead compound against amoebiasis. FEBS J 2008; 275:548-60. [DOI: 10.1111/j.1742-4658.2007.06221.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|