1
|
Wuensch C, Pavkov-Keller T, Steinkellner G, Gross J, Fuchs M, Hromic A, Lyskowski A, Fauland K, Gruber K, Glueck SM, Faber K. Regioselective Enzymatic β-Carboxylation of para-Hydroxy- styrene Derivatives Catalyzed by Phenolic Acid Decarboxylases. Adv Synth Catal 2015; 357:1909-1918. [PMID: 26190963 PMCID: PMC4498466 DOI: 10.1002/adsc.201401028] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/07/2015] [Indexed: 11/17/2022]
Abstract
We report on a 'green' method for the utilization of carbon dioxide as C1 unit for the regioselective synthesis of (E)-cinnamic acids via regioselective enzymatic carboxylation of para-hydroxystyrenes. Phenolic acid decarboxylases from bacterial sources catalyzed the β-carboxylation of para-hydroxystyrene derivatives with excellent regio- and (E/Z)-stereoselectivity by exclusively acting at the β-carbon atom of the C=C side chain to furnish the corresponding (E)-cinnamic acid derivatives in up to 40% conversion at the expense of bicarbonate as carbon dioxide source. Studies on the substrate scope of this strategy are presented and a catalytic mechanism is proposed based on molecular modelling studies supported by mutagenesis of amino acid residues in the active site.
Collapse
Affiliation(s)
- Christiane Wuensch
- Austrian Centre of Industrial Biotechnology, c/o Department of Chemistry, Organic & Bioorganic Chemistry, Heinrichstrasse 28, University of Graz 8010 Graz, Austria ; Department of Chemistry, Organic & Bioorganic Chemistry, Heinrichstrasse 28, University of Graz 8010 Graz, Austria, ; phone: (+43)-316-380-5332 ; e-mail: or
| | - Tea Pavkov-Keller
- Austrian Centre of Industrial Biotechnology, c/o Department of Chemistry, Organic & Bioorganic Chemistry, Heinrichstrasse 28, University of Graz 8010 Graz, Austria ; Institute of Molecular Biosciences, Humboldtstrasse 50, University of Graz 8010 Graz, Austria
| | - Georg Steinkellner
- Austrian Centre of Industrial Biotechnology, c/o Department of Chemistry, Organic & Bioorganic Chemistry, Heinrichstrasse 28, University of Graz 8010 Graz, Austria ; Institute of Molecular Biosciences, Humboldtstrasse 50, University of Graz 8010 Graz, Austria
| | - Johannes Gross
- Austrian Centre of Industrial Biotechnology, c/o Department of Chemistry, Organic & Bioorganic Chemistry, Heinrichstrasse 28, University of Graz 8010 Graz, Austria ; Department of Chemistry, Organic & Bioorganic Chemistry, Heinrichstrasse 28, University of Graz 8010 Graz, Austria, ; phone: (+43)-316-380-5332 ; e-mail: or
| | - Michael Fuchs
- Department of Chemistry, Organic & Bioorganic Chemistry, Heinrichstrasse 28, University of Graz 8010 Graz, Austria, ; phone: (+43)-316-380-5332 ; e-mail: or
| | - Altijana Hromic
- Austrian Centre of Industrial Biotechnology, c/o Department of Chemistry, Organic & Bioorganic Chemistry, Heinrichstrasse 28, University of Graz 8010 Graz, Austria ; Institute of Molecular Biosciences, Humboldtstrasse 50, University of Graz 8010 Graz, Austria
| | - Andrzej Lyskowski
- Austrian Centre of Industrial Biotechnology, c/o Department of Chemistry, Organic & Bioorganic Chemistry, Heinrichstrasse 28, University of Graz 8010 Graz, Austria ; Institute of Molecular Biosciences, Humboldtstrasse 50, University of Graz 8010 Graz, Austria
| | - Kerstin Fauland
- Austrian Centre of Industrial Biotechnology, c/o Department of Chemistry, Organic & Bioorganic Chemistry, Heinrichstrasse 28, University of Graz 8010 Graz, Austria ; Institute of Molecular Biosciences, Humboldtstrasse 50, University of Graz 8010 Graz, Austria
| | - Karl Gruber
- Institute of Molecular Biosciences, Humboldtstrasse 50, University of Graz 8010 Graz, Austria
| | - Silvia M Glueck
- Austrian Centre of Industrial Biotechnology, c/o Department of Chemistry, Organic & Bioorganic Chemistry, Heinrichstrasse 28, University of Graz 8010 Graz, Austria ; Department of Chemistry, Organic & Bioorganic Chemistry, Heinrichstrasse 28, University of Graz 8010 Graz, Austria, ; phone: (+43)-316-380-5332 ; e-mail: or
| | - Kurt Faber
- Department of Chemistry, Organic & Bioorganic Chemistry, Heinrichstrasse 28, University of Graz 8010 Graz, Austria, ; phone: (+43)-316-380-5332 ; e-mail: or
| |
Collapse
|
2
|
Visnapuu T, Mardo K, Mosoarca C, Zamfir AD, Vigants A, Alamäe T. Levansucrases from Pseudomonas syringae pv. tomato and P. chlororaphis subsp. aurantiaca: Substrate specificity, polymerizing properties and usage of different acceptors for fructosylation. J Biotechnol 2011; 155:338-49. [DOI: 10.1016/j.jbiotec.2011.07.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 06/03/2011] [Accepted: 07/20/2011] [Indexed: 11/25/2022]
|
3
|
Matte A, Grosse S, Bergeron H, Abokitse K, Lau PCK. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1407-14. [PMID: 21045284 PMCID: PMC3001637 DOI: 10.1107/s174430911003246x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 08/12/2010] [Indexed: 05/12/2023]
Abstract
The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavouring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a β-barrel structure and two α-helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the β-barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site.
Collapse
Affiliation(s)
- Allan Matte
- Health Sector, Biotechnology Research Institute, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Stephan Grosse
- Environment Sector, Biotechnology Research Institute, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Hélène Bergeron
- Environment Sector, Biotechnology Research Institute, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Kofi Abokitse
- Environment Sector, Biotechnology Research Institute, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Peter C. K. Lau
- Environment Sector, Biotechnology Research Institute, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| |
Collapse
|
4
|
Rodríguez H, Angulo I, de Las Rivas B, Campillo N, Páez JA, Muñoz R, Mancheño JM. p-Coumaric acid decarboxylase from Lactobacillus plantarum: structural insights into the active site and decarboxylation catalytic mechanism. Proteins 2010; 78:1662-76. [PMID: 20112419 DOI: 10.1002/prot.22684] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
p-Coumaric acid decarboxylases (PDCs) catalyze the nonoxidative decarboxylation of hydroxycinnamic acids to generate the corresponding vinyl derivatives. Despite the biotechnological relevance of PDCs in food industry, their catalytic mechanism remains largely unknown. Here, we report insights into the structural basis of catalysis for the homodimeric PDC from Lactobacillus plantarum (LpPDC). The global fold of LpPDC is based on a flattened beta-barrel surrounding an internal cavity. Crystallographic and functional analyses of single-point mutants of residues located within this cavity have permitted identifying a potential substrate-binding pocket and also to provide structural evidences for rearrangements of surface loops so that they can modulate the accessibility to the active site. Finally, combination of the structural and functional data with in silico results enables us to propose a two-step catalytic mechanism for decarboxylation of p-coumaric acid by PDCs where Glu71 is involved in proton transfer, and Tyr18 and Tyr20 are involved in the proper substrate orientation and in the release of the CO(2) product.
Collapse
Affiliation(s)
- Héctor Rodríguez
- Departamento de Microbiología, Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
5
|
Acebrón I, Curiel JA, de las Rivas B, Muñoz R, Mancheño JM. Cloning, production, purification and preliminary crystallographic analysis of a glycosidase from the food lactic acid bacterium Lactobacillus plantarum CECT 748T. Protein Expr Purif 2009; 68:177-82. [DOI: 10.1016/j.pep.2009.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/08/2009] [Accepted: 07/09/2009] [Indexed: 01/22/2023]
|