1
|
Matsuura Y, Takehira M, Makhatadze GI, Joti Y, Naitow H, Kunishima N, Yutani K. Strategy for Stabilization of CutA1 Proteins Due to Ion-Ion Interactions at Temperatures of over 100 °C. Biochemistry 2018; 57:2649-2656. [PMID: 29648806 DOI: 10.1021/acs.biochem.8b00103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In order to elucidate the contribution of charged residues to protein stabilization at temperatures of over 100 °C, we constructed many mutants of the CutA1 protein ( EcCutA1) from Escherichia coli. The goal was to see if one can achieve the same stability as for a CutA1 from hyperthermophile Pyrococcus horikoshii that has the denaturation temperature near 150 °C. The hydrophobic mutant of EcCutA1 ( Ec0VV) with denaturation temperature ( Td) of 113.2 °C was used as a template for mutations. The highest Td of Ec0VV mutants substituted by a single charged residue was 118.4 °C. Multiple ion mutants were also constructed by combination of single mutants and found to have an increased thermostability. The highest stability of multiple mutants was a mutant substituted by nine charged residues that had a Td of 142.2 °C. To evaluate the energy of ion-ion interactions of mutant proteins, we used the structural ensemble obtained by a molecular dynamics simulation at 300 K. The Td of ionic mutants linearly increases with the increments of the computed energy of ion-ion interactions for ionic mutant proteins even up to the temperatures near 140 °C, suggesting that ion-ion interactions cumulatively contribute to the stabilization of a protein at high temperatures.
Collapse
Affiliation(s)
| | - Michiyo Takehira
- RIKEN SPring-8 Center , 1-1-1 Kouto , Sayo, Hyogo 679-5148 , Japan
| | - George I Makhatadze
- Department of Biology , Rensselaer Polytechnic Institute , 110 Eighth Street , Troy , New York 12180-3590 , United States
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute , 1-1-1, Kouto , Sayo, Hyogo 679-5198 Japan
| | - Hisashi Naitow
- RIKEN SPring-8 Center , 1-1-1 Kouto , Sayo, Hyogo 679-5148 , Japan
| | - Naoki Kunishima
- RIKEN SPring-8 Center , 1-1-1 Kouto , Sayo, Hyogo 679-5148 , Japan
| | - Katsuhide Yutani
- RIKEN SPring-8 Center , 1-1-1 Kouto , Sayo, Hyogo 679-5148 , Japan
| |
Collapse
|
2
|
Buchko GW, Abendroth J, Clifton MC, Robinson H, Zhang Y, Hewitt SN, Staker BL, Edwards TE, Van Voorhis WC, Myler PJ. Structure of a CutA1 divalent-cation tolerance protein from Cryptosporidium parvum, the protozoal parasite responsible for cryptosporidiosis. Acta Crystallogr F Struct Biol Commun 2015; 71:522-30. [PMID: 25945704 PMCID: PMC4427160 DOI: 10.1107/s2053230x14028210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/29/2014] [Indexed: 11/11/2022] Open
Abstract
Cryptosporidiosis is an infectious disease caused by protozoan parasites of the Cryptosporidium genus. Infection is associated with mild to severe diarrhea that usually resolves spontaneously in healthy human adults, but may lead to severe complications in young children and in immunocompromised patients. The genome of C. parvum contains a gene, CUTA_CRYPI, that may play a role in regulating the intracellular concentration of copper, which is a toxic element in excess. Here, the crystal structure of this CutA1 protein, Cp-CutA1, is reported at 2.0 Å resolution. As observed for other CutA1 structures, the 117-residue protein is a trimer with a core ferrodoxin-like fold. Circular dichroism spectroscopy shows little, in any, unfolding of Cp-CutA1 up to 353 K. This robustness is corroborated by (1)H-(15)N HSQC spectra at 333 K, which are characteristic of a folded protein, suggesting that NMR spectroscopy may be a useful tool to further probe the function of the CutA1 proteins. While robust, Cp-CutA1 is not as stable as the homologous protein from a hyperthermophile, perhaps owing to a wide β-bulge in β2 that protrudes Pro48 and Ser49 outside the β-sheet.
Collapse
Affiliation(s)
- Garry W. Buchko
- Seattle Structural Genomics Center for Infectious Disease, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease, USA
- Beryllium, Bainbridge Island, Washington, USA
| | - Matthew C. Clifton
- Seattle Structural Genomics Center for Infectious Disease, USA
- Beryllium, Bainbridge Island, Washington, USA
| | - Howard Robinson
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Yanfeng Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Stephen N. Hewitt
- Seattle Structural Genomics Center for Infectious Disease, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease, USA
- Seattle Biomedical Research Institute, Seattle, Washington, USA
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease, USA
- Beryllium, Bainbridge Island, Washington, USA
| | - Wesley C. Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease, USA
- Seattle Biomedical Research Institute, Seattle, Washington, USA
- Department of Medical Education and Biomedical Informatics and Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Bagautdinov B. The structures of the CutA1 proteins from Thermus thermophilus and Pyrococcus horikoshii: characterization of metal-binding sites and metal-induced assembly. Acta Crystallogr F Struct Biol Commun 2014; 70:404-13. [PMID: 24699729 PMCID: PMC3976053 DOI: 10.1107/s2053230x14003422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/15/2014] [Indexed: 11/10/2022] Open
Abstract
CutA1 (copper tolerance A1) is a widespread cytoplasmic protein found in archaea, bacteria, plants and animals, including humans. In Escherichia coli it is implicated in divalent metal tolerance, while the mammalian CutA1 homologue has been proposed to mediate brain enzyme acetylcholinesterase activity and copper homeostasis. The X-ray structures of CutA1 from the thermophilic bacterium Thermus thermophilus (TtCutA1) with and without bound Na(+) at 1.7 and 1.9 Å resolution, respectively, and from the hyperthermophilic archaeon Pyrococcus horikoshii (PhCutA1) in complex with Na(+) at 1.8 Å resolution have been determined. Both are short and rigid proteins of about 12 kDa that form intertwined compact trimers in the crystal and solution. The main difference in the structures is a wide-type β-bulge on top of the TtCutA1 trimer. It affords a mechanism for lodging a single-residue insertion in the middle of β2 while preserving the interprotomer main-chain hydrogen-bonding network. The liganded forms of the proteins provide new structural information about the metal-binding sites and CutA1 assembly. The Na(+)-TtCutA1 structure unveils a dodecameric assembly with metal ions in the trimer-trimer interfaces and the lateral clefts of the trimer. For Na(+)-PhCutA1, the metal ion associated with six waters in an octahedral geometry. The structures suggest that CutA1 may contribute to regulating intracellular metal homeostasis through various binding modes.
Collapse
Affiliation(s)
- Bagautdin Bagautdinov
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
4
|
Sato A, Yokotani S, Tadokoro T, Tanaka SI, Angkawidjaja C, Koga Y, Takano K, Kanaya S. Crystal structure of stable protein CutA1 from psychrotrophic bacterium Shewanella sp. SIB1. JOURNAL OF SYNCHROTRON RADIATION 2011; 18:6-10. [PMID: 21169681 PMCID: PMC3004244 DOI: 10.1107/s0909049510028669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 07/18/2010] [Indexed: 05/30/2023]
Abstract
CutA1 is widely found in bacteria, plants and animals, including humans. The functions of CutA1, however, have not been well clarified. It is known that CutA1s from Pyrococcus horikoshii, Thermus thermophilus and Oryza sativa unfold at temperatures remarkably higher than the growth temperatures of the host organisms. In this work the crystal structure of CutA1 from the psychrotrophic bacterium Shewanella sp. SIB1 (SIB1-CutA1) in a trimeric form was determined at 2.7 Å resolution. This is the first crystal structure of a psychrotrophic CutA1. The overall structure of SIB1-CutA1 is similar to those of CutA1 from Homo sapiens, Escherichia coli, Pyrococcus horikoshii, Thermus thermophilus, Termotoga maritima, Oryza sativa and Rattus norvergicus. A peculiarity is observed in the β2 strand. The β2 strand is divided into two short β strands, β2a and β2b, in SIB1-CutA1. A thermal denaturation experiment revealed that SIB1-CutA1 does not unfold completely at 363 K at pH 7.0, although Shewanella sp. SIB1 cannot grow at temperatures exceeding 303 K. These results indicate that the trimeric structural motif of CutA1 is the critical factor in its unusually high stability and suggest that CutA1 needs to maintain its high stability in order to function, even in psychrotrophs.
Collapse
Affiliation(s)
- Aya Sato
- Department of Material and Life Science, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Sonoko Yokotani
- Department of Material and Life Science, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Takashi Tadokoro
- Department of Material and Life Science, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Shun-ichi Tanaka
- Department of Material and Life Science, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Clement Angkawidjaja
- Department of Material and Life Science, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Yuichi Koga
- Department of Material and Life Science, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Kazufumi Takano
- Department of Material and Life Science, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
- JST-CREST, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Shigenori Kanaya
- Department of Material and Life Science, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|