1
|
Romero-López MJ, Jiménez-Wences H, Cruz-De La Rosa MI, Alarcón-Millán J, Mendoza-Catalán MÁ, Ortiz-Sánchez E, Tinajero-Rodríguez JM, Hernández-Sotelo D, Valente-Niño GW, Martínez-Carrillo DN, Fernández-Tilapa G. miR-218-5p, miR-124-3p and miR-23b-3p act synergistically to modulate the expression of NACC1, proliferation, and apoptosis in C-33A and CaSki cells. Noncoding RNA Res 2024; 9:720-731. [PMID: 38577025 PMCID: PMC10990753 DOI: 10.1016/j.ncrna.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Abstract
Background In cervical cancer (CC), miR-218-5p, -124-3p, and -23b-3p act as tumor suppressors. These miRNAs have specific and common target genes that modulate apoptosis, proliferation, invasion, and migration; biological processes involved in cancer. Methods miR-218-5p, -124-3p, and -23b-3p mimics were transfected into C-33A and CaSki cells, and RT-qPCR was used to quantify the level of each miRNA and NACC1. Proliferation was assessed by BrdU and apoptosis by Annexin V/PI. In the TCGA and The Human Protein Atlas databases, the level of NACC1 mRNA and protein (putative target of the three miRNAs) was analyzed in CC and normal tissue. The relationship of NACC1 with the overall survival in CC was analyzed in GEPIA2. NACC1 mRNA and protein levels were higher in CC tissues compared with cervical tissue without injury. Results An increased expression of NACC1 was associated with lower overall survival in CC patients. The levels of miR-218-5p, -124-3p, and -23b-3p were lower, and NACC1 was higher in C-33A and CaSki cells compared to HaCaT cells. The increase of miR-218-5p, -124-3p, and -23b-3p induced a significant decrease in NACC1 mRNA. The transfection of the three miRNAs together caused more drastic changes in the level of NACC1, in the proliferation, and in the apoptosis with respect to the individual transfections of each miRNA. Conclusion The results indicate that miR-218-5p, -124-3p, and -23b-3p act synergistically to decrease NACC1 expression and proliferation while promoting apoptosis in C-33A and CaSki cells. The levels of NACC1, miR-218-5p, -124-3p, and -23b-3p may be a potential prognostic indicator in CC.
Collapse
Affiliation(s)
- Manuel Joaquín Romero-López
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
| | - Hilda Jiménez-Wences
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
- Biomolecules Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
| | - Merlin Itsel Cruz-De La Rosa
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
| | - Judit Alarcón-Millán
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
- Biomolecules Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
| | - Miguel Ángel Mendoza-Catalán
- Biomolecules Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
| | - Elizabeth Ortiz-Sánchez
- Basic Research Sub-directorate, National Institute of Cancerology, Mexico City, 14080, Mexico
| | - José Manuel Tinajero-Rodríguez
- Basic Research Sub-directorate, National Institute of Cancerology, Mexico City, 14080, Mexico
- Cancer Epigenetics Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
| | - Daniel Hernández-Sotelo
- Cancer Epigenetics Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
| | - Gladys Wendy Valente-Niño
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
| | - Dinorah Nashely Martínez-Carrillo
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
- Biomolecules Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
| | - Gloria Fernández-Tilapa
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
- Biomolecules Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
| |
Collapse
|
2
|
Mance L, Bigot N, Zhamungui Sánchez E, Coste F, Martín-González N, Zentout S, Biliškov M, Pukało Z, Mishra A, Chapuis C, Arteni AA, Lateur A, Goffinont S, Gaudon V, Talhaoui I, Casuso I, Beaufour M, Garnier N, Artzner F, Cadene M, Huet S, Castaing B, Suskiewicz MJ. Dynamic BTB-domain filaments promote clustering of ZBTB proteins. Mol Cell 2024; 84:2490-2510.e9. [PMID: 38996459 DOI: 10.1016/j.molcel.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/11/2024] [Accepted: 05/31/2024] [Indexed: 07/14/2024]
Abstract
The formation of dynamic protein filaments contributes to various biological functions by clustering individual molecules together and enhancing their binding to ligands. We report such a propensity for the BTB domains of certain proteins from the ZBTB family, a large eukaryotic transcription factor family implicated in differentiation and cancer. Working with Xenopus laevis and human proteins, we solved the crystal structures of filaments formed by dimers of the BTB domains of ZBTB8A and ZBTB18 and demonstrated concentration-dependent higher-order assemblies of these dimers in solution. In cells, the BTB-domain filamentation supports clustering of full-length human ZBTB8A and ZBTB18 into dynamic nuclear foci and contributes to the ZBTB18-mediated repression of a reporter gene. The BTB domains of up to 21 human ZBTB family members and two related proteins, NACC1 and NACC2, are predicted to behave in a similar manner. Our results suggest that filamentation is a more common feature of transcription factors than is currently appreciated.
Collapse
Affiliation(s)
- Lucija Mance
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Nicolas Bigot
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT - UAR3480, 35000 Rennes, France
| | - Edison Zhamungui Sánchez
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Franck Coste
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France.
| | - Natalia Martín-González
- Aix-Marseille Université, INSERM, DyNaMo, Turing Centre for Living Systems (CENTURI), 13288 Marseille Cedex 09, France; Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288 Marseille Cedex 09, France
| | - Siham Zentout
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT - UAR3480, 35000 Rennes, France
| | - Marin Biliškov
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Zofia Pukało
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Aanchal Mishra
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Catherine Chapuis
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT - UAR3480, 35000 Rennes, France
| | - Ana-Andreea Arteni
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Cryo-Electron Microscopy Facility, CRYOEM-Gif, 91198 Gif-sur-Yvette, France
| | - Axelle Lateur
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Stéphane Goffinont
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Virginie Gaudon
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Ibtissam Talhaoui
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Ignacio Casuso
- Aix-Marseille Université, INSERM, DyNaMo, Turing Centre for Living Systems (CENTURI), 13288 Marseille Cedex 09, France
| | - Martine Beaufour
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Norbert Garnier
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Franck Artzner
- Université Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000 Rennes, France
| | - Martine Cadene
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Sébastien Huet
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT - UAR3480, 35000 Rennes, France; Institut Universitaire de France, 75005 Paris, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Marcin Józef Suskiewicz
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France.
| |
Collapse
|
3
|
Nucleus Accumbens-Associated Protein 1 Binds DNA Directly through the BEN Domain in a Sequence-Specific Manner. Biomedicines 2020; 8:biomedicines8120608. [PMID: 33327466 PMCID: PMC7764960 DOI: 10.3390/biomedicines8120608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 01/03/2023] Open
Abstract
Nucleus accumbens-associated protein 1 (NAC1) is a nuclear protein that harbors an amino-terminal BTB domain and a carboxyl-terminal BEN domain. NAC1 appears to play significant and diverse functions in cancer and stem cell biology. Here we demonstrated that the BEN domain of NAC1 is a sequence-specific DNA-binding domain. We selected the palindromic 6 bp motif ACATGT as a target sequence by using a PCR-assisted random oligonucleotide selection approach. The interaction between NAC1 and target DNA was characterized by gel shift assays, pull-down assays, isothermal titration calorimetry (ITC), chromatin-immunoprecipitation assays, and NMR chemical shifts perturbation (CSP). The solution NMR structure revealed that the BEN domain of human NAC-1 is composed of five conserved α helices and two short β sheets, with an additional hitherto unknown N-terminal α helix. In particular, ITC clarified that there are two sequential events in the titration of the BEN domain of NAC1 into the target DNA. The ITC results were further supported by CSP data and structure analyses. Furthermore, live cell photobleaching analyses revealed that the BEN domain of NAC1 alone was unable to interact with chromatin/other proteins in cells.
Collapse
|
4
|
Gao M, Herlinger AL, Wu R, Wang TL, Shih IM, Kong B, Rangel LBA, Yang JM. NAC1 attenuates BCL6 negative autoregulation and functions as a BCL6 coactivator of FOXQ1 transcription in cancer cells. Aging (Albany NY) 2020; 12:9275-9291. [PMID: 32412910 PMCID: PMC7288929 DOI: 10.18632/aging.103203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/09/2020] [Indexed: 01/08/2023]
Abstract
Background: Nucleus accumbens-associated protein 1 (NAC1) has multifaceted roles in cancer pathogenesis and progression, including the development of drug resistance, promotion of cytokinesis, and maintenance of “stem cell-like” phenotypes. NAC1 is a transcriptional co-regulator belonging to the bric-a-brac tramtrack broad (BTB) family of proteins, although it lacks the characteristic DNA binding motif of the BTB family. The formation of higher-order transcription complexes likely depends on its interaction with other DNA-binding co-factors. Results: NAC1 interacts with BCL6 via its C-terminal BEN domain and forms a complex that binds the promoter region and activates transcription of the NAC1 target gene, FOXQ1. NAC1 and BCL6 were coordinately upregulated. Our analysis also identified a novel function of NAC1 in attenuating BCL6 auto-downregulation in ovarian cancer. Lastly, we found a significant overlap among NAC1- and BCL6-regulated genes in tumor cells, suggesting that NAC1 and BCL6 coordinately control transcription in cancer. Conclusions: The results of this study provide a novel mechanistic insight into the oncogenic roles of NAC1 and underline the importance of developing the NAC1/BCL6-targeted cancer therapy. Methods: Using the Cistrome database and Chromatin Immunoprecipitation (ChIP) analyses, we identified BCL6 as a potential NAC1- interacting molecule. Co-immunoprecipitation (Co-IP), luciferase reporter assay, immunohistochemistry and microarray analysis were performed to analyze the interaction between NAC1 and BCL6 and the mechanisms by which they regulate the downstream genes including FOXQ1.
Collapse
Affiliation(s)
- Min Gao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, PR China.,Departments of Gynecology and Obstetrics, Oncology and Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Alice Laschuk Herlinger
- Departments of Gynecology and Obstetrics, Oncology and Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.,Biotechnology Program/Renorbio, Health Science Center, Federal University of Espírito Santo, Vitória, Brazil.,Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Renchin Wu
- Departments of Gynecology and Obstetrics, Oncology and Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Tian-Li Wang
- Departments of Gynecology and Obstetrics, Oncology and Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Ie-Ming Shih
- Departments of Gynecology and Obstetrics, Oncology and Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, PR China
| | - Leticia Batista Azevedo Rangel
- Biotechnology Program/Renorbio, Health Science Center, Federal University of Espírito Santo, Vitória, Brazil.,Biochemistry and Pharmacology Program, Health Science Center, Federal University of Espírito Santo, Vitória, Brazil.,Department of Pharmaceutical Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | - Jin-Ming Yang
- Department of Toxicology and Cancer Biology, College of Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
5
|
Targeting oncogenic transcriptional corepressor Nac1 POZ domain with conformationally constrained peptides by cyclization and stapling. Bioorg Chem 2018; 80:1-10. [DOI: 10.1016/j.bioorg.2018.05.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/10/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
|
6
|
Nakayama N, Sakashita G, Nariai Y, Kato H, Sinmyozu K, Nakayama JI, Kyo S, Urano T, Nakayama K. Cancer-related transcription regulator protein NAC1 forms a protein complex with CARM1 for ovarian cancer progression. Oncotarget 2018; 9:28408-28420. [PMID: 29983869 PMCID: PMC6033357 DOI: 10.18632/oncotarget.25400] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/16/2018] [Indexed: 01/07/2023] Open
Abstract
NAC1 is a cancer-related transcription regulator protein that is overexpressed in various carcinomas, including ovarian, cervical, breast, and pancreatic carcinomas. NAC1 knock-down was previously shown to result in the apoptosis of ovarian cancer cell lines and to rescue their sensitivity to chemotherapy, suggesting that NAC1 may be a potential therapeutic target, but protein complex formation of intranuclear NAC1 in ovarian cancer cells remain poorly understood. In this study, analysis of ovarian cancer cell lysates by fast protein liquid chromatography on a sizing column showed that the NAC1 peak corresponded to an apparent molecular mass of 300–500 kDa, which is larger than the estimated molecular mass (58 kDa) of the protein. Liquid chromatography-tandem mass spectrometry analysis identified CARM1 as interacting with NAC1 in the protein complex. Furthermore, tissue microarray analysis revealed a significant correlation between CARM1 and NAC1 expression levels. Ovarian cancer patients expressing high levels of NAC1 and CARM1 exhibited poor prognosis after adjuvant chemotherapy. Collectively, our results demonstrate that high expression levels of NAC1 and its novel binding partner CARM1 may serve as an informative prognostic biomarker for predicting resistance to chemotherapy for ovarian cancer.
Collapse
Affiliation(s)
- Naomi Nakayama
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Japan
| | - Gyosuke Sakashita
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Japan
| | - Yuko Nariai
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Japan
| | - Hiroaki Kato
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Japan
| | - Kaori Sinmyozu
- Proteomics Support Unit, RIKEN Center for Developmental Biology, Kobe, Japan.,Current address: National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Jun-Ichi Nakayama
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Japan
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
7
|
Nakayama N, Kato H, Sakashita G, Nariai Y, Nakayama K, Kyo S, Urano T. Protein complex formation and intranuclear dynamics of NAC1 in cancer cells. Arch Biochem Biophys 2016; 606:10-5. [PMID: 27424155 DOI: 10.1016/j.abb.2016.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
Abstract
Nucleus accumbens-associated protein 1 (NAC1) is a cancer-related transcription regulator protein that is also involved in the pluripotency and differentiation of embryonic stem cells. NAC1 is overexpressed in various carcinomas including ovarian, cervical, breast, and pancreatic carcinomas. NAC1 knock-down was previously shown to result in the apoptosis of ovarian cancer cell lines and to rescue their sensitivity to chemotherapy, suggesting that NAC1 may be a potential therapeutic target, but protein complex formation and the dynamics of intranuclear NAC1 in cancer cells remain poorly understood. In this study, analysis of HeLa cell lysates by fast protein liquid chromatography (FPLC) on a sizing column showed that the NAC1 peak corresponded to an apparent molecular mass of 300-500 kDa, which is larger than the estimated molecular mass (58 kDa) of the protein. Furthermore, live cell photobleaching analyses with green fluorescent protein (GFP)-fused NAC1 proteins revealed the intranuclear dynamics of NAC1. Collectively our results demonstrate that NAC1 forms a protein complex to function as a transcriptional regulator in cancer cells.
Collapse
Affiliation(s)
- Naomi Nakayama
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Hiroaki Kato
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Gyosuke Sakashita
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Yuko Nariai
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan.
| |
Collapse
|
8
|
Stead MA, Wright SC. Structures of heterodimeric POZ domains of Miz1/BCL6 and Miz1/NAC1. Acta Crystallogr F Struct Biol Commun 2014; 70:1591-6. [PMID: 25484205 PMCID: PMC4259219 DOI: 10.1107/s2053230x14023449] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/24/2014] [Indexed: 12/22/2022] Open
Abstract
The POZ domain is an evolutionarily conserved protein-protein interaction domain that is found in approximately 40 mammalian transcription factors. POZ domains mediate both homodimerization and the heteromeric interactions of different POZ-domain transcription factors with each other. Miz1 is a POZ-domain transcription factor that regulates cell-cycle arrest and DNA-damage responses. The activities of Miz1 are altered by its interaction with the POZ-domain transcriptional repressors BCL6 and NAC1, and these interactions have been implicated in tumourigenesis in B-cell lymphomas and in ovarian serous carcinomas that overexpress BCL6 and NAC1, respectively. A strategy for the purification of tethered POZ domains that form forced heterodimers is described, and crystal structures of the heterodimeric POZ domains of Miz1/BCL6 and of Miz1/NAC1 are reported. These structures will be relevant for the design of therapeutics that target POZ-domain interaction interfaces.
Collapse
|
9
|
Abstract
Nac1 (nucleus accumbens 1) is a POZ (poxvirus and zinc finger)-domain transcriptional repressor that is expressed at high levels in ovarian serous carcinoma. Here we identify Nac1 as a novel interacting partner of the POZ-domain transcriptional activator, Miz1 (Myc-interacting zinc-finger protein 1), and using chemical crosslinking we show that this association is mediated by a heterodimeric interaction of the Nac1 and Miz1 POZ domains. Nac1 is found in discrete bodies within the nucleus of mammalian cells, and we demonstrate the relocalization of Miz1 to these structures in transfected HeLa cells. We show that siRNA (small interfering RNA)-mediated knockdown of Nac1 in ovarian cancer cells results in increased levels of the Miz1 target gene product, p21Cip1. The interaction of Nac1 with Miz1 may thus be relevant to its mechanism of tumourigenesis in ovarian cancer. Nac1 is a transcriptional repressor that has been implicated in ovarian serous carcinoma. Here we show that Nac1 interacts with the transcription factor Miz1, and suggest that this interaction may contribute to tumourigenesis.
Collapse
|
10
|
Identification of the NAC1-regulated genes in ovarian cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:133-40. [PMID: 24200849 DOI: 10.1016/j.ajpath.2013.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 08/20/2013] [Accepted: 09/10/2013] [Indexed: 01/23/2023]
Abstract
Nucleus accumbens-associated protein 1 (NAC1), encoded by the NACC1 gene, is a transcription co-regulator that plays a multifaceted role in promoting tumorigenesis. However, the NAC1-regulated transcriptome has not been comprehensively defined. In this study, we compared the global gene expression profiles of NAC1-overexpressing SKOV3 ovarian cancer cells and NAC1-knockdown SKOV3 cells. We found that NAC1 knockdown was associated with up-regulation of apoptotic genes and down-regulation of genes involved in cell movement, proliferation, Notch signaling, and epithelial-mesenchymal transition. Among NAC1-regulated genes, FOXQ1 was further characterized because it is involved in cell motility and epithelial-mesenchymal transition. NAC1 knockdown decreased FOXQ1 expression and promoter activity. Similarly, inactivation of NAC1 by expression of a dominant-negative construct of NAC1 suppressed FOXQ1 expression. Ectopic expression of NAC1 in NACC1 null cells induced FOXQ1 expression. NAC1 knockdown resulted in decreased cell motility and invasion, whereas constitutive expression of FOXQ1 rescued motility in cells after NAC1 silencing. Moreover, in silico analysis revealed a significant co-up-regulation of NAC1 and FOXQ1 in ovarian carcinoma tissues. On the basis of transcription profiling, we report a group of NAC1-regulated genes that may participate in multiple cancer-related pathways. We further demonstrate that NAC1 is essential and sufficient for activation of FOXQ1 transcription and that the role of NAC1 in cell motility is mediated, at least in part, by FOXQ1.
Collapse
|
11
|
Loss of NAC1 expression is associated with defective bony patterning in the murine vertebral axis. PLoS One 2013; 8:e69099. [PMID: 23922682 PMCID: PMC3724875 DOI: 10.1371/journal.pone.0069099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/06/2013] [Indexed: 11/19/2022] Open
Abstract
NAC1 encoded by NACC1 is a member of the BTB/POZ family of proteins and participates in several pathobiological processes. However, its function during tissue development has not been elucidated. In this study, we compared homozygous null mutant Nacc1-/- and wild type Nacc1+/+ mice to determine the consequences of diminished NAC1 expression. The most remarkable change in Nacc1-/- mice was a vertebral patterning defect in which most knockout animals exhibited a morphological transformation of the sixth lumbar vertebra (L6) into a sacral identity; thus, the total number of pre-sacral vertebrae was decreased by one (to 25) in Nacc1-/- mice. Heterozygous Nacc1+/- mice had an increased tendency to adopt an intermediate phenotype in which L6 underwent partial sacralization. Nacc1-/- mice also exhibited non-closure of the dorsal aspects of thoracic vertebrae T10-T12. Chondrocytes from Nacc1+/+ mice expressed abundant NAC1 while Nacc1-/- chondrocytes had undetectable levels. Loss of NAC1 in Nacc1-/- mice was associated with significantly reduced chondrocyte migratory potential as well as decreased expression of matrilin-3 and matrilin-4, two cartilage-associated extracellular matrix proteins with roles in the development and homeostasis of cartilage and bone. These data suggest that NAC1 participates in the motility and differentiation of developing chondrocytes and cartilaginous tissues, and its expression is necessary to maintain normal axial patterning of murine skeleton.
Collapse
|
12
|
Nishi T, Maruyama R, Urano T, Nakayama N, Kawabata Y, Yano S, Yoshida M, Nakayama K, Miyazaki K, Takenaga K, Tanaka T, Tajima Y. Low expression of nucleus accumbens-associated protein 1 predicts poor prognosis for patients with pancreatic ductal adenocarcinoma. Pathol Int 2012; 62:802-10. [DOI: 10.1111/pin.12020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 11/19/2012] [Indexed: 01/02/2023]
Affiliation(s)
- Takeshi Nishi
- Department of Digestive and General Surgery; Shimane University Faculty of Medicine; Izumo; Japan
| | - Riruke Maruyama
- Department of Organ Pathology; Shimane University Faculty of Medicine; Izumo; Japan
| | - Takeshi Urano
- Department of Biochemistry; Shimane University Faculty of Medicine; Izumo; Japan
| | - Naomi Nakayama
- Department of Biochemistry; Shimane University Faculty of Medicine; Izumo; Japan
| | - Yasunari Kawabata
- Department of Digestive and General Surgery; Shimane University Faculty of Medicine; Izumo; Japan
| | - Seiji Yano
- Department of Digestive and General Surgery; Shimane University Faculty of Medicine; Izumo; Japan
| | - Manabu Yoshida
- Department of Pathology; Matsue Municipal Hospital; Matsue; Japan
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology; Shimane University Faculty of Medicine; Izumo; Japan
| | - Kohji Miyazaki
- Department of Obstetrics and Gynecology; Shimane University Faculty of Medicine; Izumo; Japan
| | - Keizo Takenaga
- Life Science Laboratory of Tumor Biology; Shimane University Faculty of Medicine; Izumo; Japan
| | - Tsuneo Tanaka
- Department of Surgery; Ootagawa Hospital; Hiroshima; Japan
| | - Yoshitsugu Tajima
- Department of Digestive and General Surgery; Shimane University Faculty of Medicine; Izumo; Japan
| |
Collapse
|
13
|
Scofield MD, Korutla L, Jackson TG, Kalivas PW, Mackler SA. Nucleus Accumbens 1, a Pox virus and Zinc finger/Bric-a-brac Tramtrack Broad protein binds to TAR DNA-binding protein 43 and has a potential role in Amyotrophic Lateral Sclerosis. Neuroscience 2012; 227:44-54. [PMID: 23022214 DOI: 10.1016/j.neuroscience.2012.09.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 09/18/2012] [Accepted: 09/19/2012] [Indexed: 12/12/2022]
Abstract
Protein degradation is a critical component of cellular maintenance. The intracellular translocation and targeting of the Ubiquitin Proteasome System (UPS) differentially coordinates a protein's half-life and thereby its function. Nucleus Accumbens 1 (NAC1), a member of the Pox virus and Zinc finger/Bric-a-brac Tramtrack Broad complex (POZ/BTB) family of proteins, participates in the coordinated proteolysis of synaptic proteins by mediating recruitment of the UPS to dendritic spines. Here we report a novel interaction between NAC1 and TAR DNA-binding protein 43 (TDP-43), a protein identified as the primary component of ubiquitinated protein aggregates found in patients with Amyotrophic Lateral Sclerosis (ALS). In vitro translated full-length TDP-43 associated with both the POZ/BTB domain and the non-POZ/BTB domain of NAC1 in GST pulldown assays. Other POZ/BTB proteins (including zinc finger POZ/BTB proteins and atypical POZ/BTB proteins) showed weak interactions with TDP-43. In addition, NAC1 and TDP-43 were present in the same immunocomplexes in different regions of mouse brain and spinal cord. In primary spinal cord cultures, TDP-43 expression was mainly nuclear, whereas NAC1 was both nuclear and cytoplasmic. In order to mimic ALS-like toxicity in the spinal cord culture system, we elevated extracellular glutamate levels resulting in the selective loss of motor neurons. Using this model, it was found that glutamate toxicity elicited a dose-dependent translocation of TDP-43 out of the nucleus of cholinergic neurons and increased the co-localization of NAC1 and TDP-43. These findings suggest that NAC1 may function to link TDP-43 to the proteasome; thereby, facilitating the post-translational modifications of TDP-43 that lead to the development of ALS.
Collapse
Affiliation(s)
- M D Scofield
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA.
| | | | | | | | | |
Collapse
|
14
|
Nakayama K, Nakayama N, Miyazaki K. Development of a novel ovarian cancer molecular target therapy against cancer-related transcriptional factor, NAC1. J Obstet Gynaecol Res 2012; 39:18-25. [PMID: 22845777 DOI: 10.1111/j.1447-0756.2012.01946.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kentaro Nakayama
- Departments of Obstetrics and Gynecology Biocehmistory, Shimane University School of Medicine, Izumo, Japan.
| | | | | |
Collapse
|
15
|
Yap KL, Fraley SI, Thiaville MM, Jinawath N, Nakayama K, Wang J, Wang TL, Wirtz D, Shih IM. NAC1 is an actin-binding protein that is essential for effective cytokinesis in cancer cells. Cancer Res 2012; 72:4085-96. [PMID: 22761335 DOI: 10.1158/0008-5472.can-12-0302] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
NAC1 is a transcriptional corepressor protein that is essential to sustain cancer cell proliferation and migration. However, the underlying molecular mechanisms of NAC1 function in cancer cells remain unknown. In this study, we show that NAC1 functions as an actin monomer-binding protein. The conserved BTB protein interaction domain in NAC1 is the minimal region for actin binding. Disrupting NAC1 complex function by dominant-negative or siRNA strategies reduced cell retraction and abscission during late-stage cytokinesis, causing multinucleation in cancer cells. In Nac1-deficient murine fibroblasts, restoring NAC1 expression was sufficient to partially avert multinucleation. We found that siRNA-mediated silencing of the actin-binding protein profilin-1 in cancer cells caused a similar multinucleation phenotype and that NAC1 modulated the binding of actin to profillin-1. Taken together, our results indicate that the NAC1/actin/profilin-1 complex is crucial for cancer cell cytokinesis, with a variety of important biologic and clinical implications.
Collapse
Affiliation(s)
- Kai Lee Yap
- Department of Pathology, Pathobiology Graduate Program, Oncology Center, Johns Hopkins University, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Okazaki K, Nakayama N, Nariai Y, Nakayama K, Miyazaki K, Maruyama R, Kato H, Kosugi S, Urano T, Sakashita G. Nuclear localization signal in a cancer-related transcriptional regulator protein NAC1. Carcinogenesis 2012; 33:1854-62. [PMID: 22665369 DOI: 10.1093/carcin/bgs193] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nucleus accumbens-associated protein 1 (NAC1) might have potential oncogenic properties and participate in regulatory networks for pluripotency. Although NAC1 is described as a transcriptional regulator, the nuclear import machinery of NAC1 remains unclear. We found, using a point mutant, that dimer formation was not committed to the nuclear localization of NAC1 and, using deletion mutants, that the amino-terminal half of NAC1 harbored a potential nuclear localization signal (NLS). Wild type, but not mutants of this region, alone was sufficient to drive the importation of green fluorescent protein (GFP) into the nucleus. Bimax1, a synthetic peptide that blocks the importin α/β pathway, impaired nuclear localization of NAC1 in cells. We also used the binding properties of importin to demonstrate that this region is an NLS. Furthermore, the transcriptional regulator function of NAC1 was dependent on its nuclear localization activity in cells. Taken together, these results show that the region with a bipartite motif constitutes a functional nuclear import sequence in NAC1 that is independent of NAC1 dimer formation. The identification of an NAC1 NLS thus clarifies the mechanism through which NAC1 translocates to the nucleus to regulate the transcription of genes involved in oncogenicity and pluripotency.
Collapse
Affiliation(s)
- Kosuke Okazaki
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rosbrook GO, Stead MA, Carr SB, Wright SC. The structure of the Bach2 POZ-domain dimer reveals an intersubunit disulfide bond. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 68:26-34. [PMID: 22194330 DOI: 10.1107/s0907444911048335] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/14/2011] [Indexed: 11/10/2022]
Abstract
Bach2 is a transcriptional repressor that is expressed during specific stages of B-cell development and in neuronal cells. It plays a critical role in modulating class-switch recombination during the differentiation of mature B cells to antibody-secreting plasma cells and it is also an important regulator of apoptotic responses to oxidative stress. Bach2 has been implicated both as an oncogene and as a tumour suppressor in human malignancy. The interaction of Bach2 with its target genes is mediated via its basic leucine-zipper region, whereas the N-terminal POZ domain recruits transcriptional co-repressors and class II histone deacetylases. Here, the crystal structure of the human Bach2 POZ domain is reported at 2.1 Å resolution. The Bach2 POZ-domain dimer resembles the POZ-domain dimers of the POZ zinc finger transcription factors and dimerization is independent of an N-terminal region that has previously been implicated in the dimerization of the POZ basic leucine-zipper protein Bach1. The Bach2 POZ domain crystallized in two forms which differed by the presence of an intersubunit disulfide bond. The intersubunit disulfide bond is present both in bacterially expressed Bach2 POZ domain in solution and in protein expressed in transfected eukaryotic cells. These crystal structures will be relevant for understanding the regulation of Bach2 in response to oxidative stress and for the design of therapeutics that target the Bach2 POZ domain in human malignancy.
Collapse
|
18
|
Expression of Fatty Acid Synthase Depends on NAC1 and Is Associated with Recurrent Ovarian Serous Carcinomas. JOURNAL OF ONCOLOGY 2010; 2010:285191. [PMID: 20508725 PMCID: PMC2873657 DOI: 10.1155/2010/285191] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Accepted: 02/21/2010] [Indexed: 01/04/2023]
Abstract
Our previous reports demonstrated that NAC1, a BTB/POZ domain-containing nuclear protein, upregulates in recurrent ovarian serous carcinoma and participates in developing drug resistance in cancer cells. The current study applies quantitative proteomics to identify the proteins controlled by NAC1 by comparing the proteomes of SKOV3 cells with and without expression of a dominant negative NAC1 construct, N130. From the proteins that are downregulated by N130 (upregulated by NAC1), we chose to further characterize fatty acid synthase (FASN). Similar to change in protein level, the FASN transcript level in SKOV3 cells was significantly reduced by N130 induction or by NAC1 knockdown. Immunohistochemistry showed that NAC1 and FASN immunointensities in ovarian serous carcinoma tissues had a highly significant correlation (P < .0001). Moreover, we found that recurrent serous carcinomas exhibited higher FASN immunointensities than their matched primary tumors (P < .001). Multivariate analysis showed that an FASN staining score of >1 in serous carcinomas was associated with a worse overall survival time (P < .01). Finally, C93, a new FASN inhibitor, induced massive apoptosis in carboplatin/paclitaxel resistant ovarian cancer cells. In conclusion, we show that NAC1 is essential for FASN expression in ovarian serous carcinomas and the expression of FASN significantly correlates with tumor recurrence and disease aggressiveness. The dependence of drug resistant tumor cells on FASN suggests a potential application of FASN-based therapeutics for recurrent ovarian cancer patients.
Collapse
|