1
|
Zhou T, Hu Y, Yan X, Cui J, Wang Y, Luo F, Yuan Y, Yu Z, Zhou Y. Molecular Cloning and Characterization of a Novel Exo-β-1,3-Galactanase from Penicillium oxalicum sp. 68. J Microbiol Biotechnol 2022; 32:1064-1071. [PMID: 35879293 PMCID: PMC9628948 DOI: 10.4014/jmb.2204.04012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Arabinogalactans have diverse biological properties and can be used as pharmaceutical agents. Most arabinogalactans are composed of β-(1→3)-galactan, so it is particularly important to identify β-1,3-galactanases that can selectively degrade them. In this study, a novel exo-β-1,3-galactanase, named PoGal3, was screened from Penicillium oxalicum sp. 68, and hetero-expressed in P. pastoris GS115 as a soluble protein. PoGal3 belongs to glycoside hydrolase family 43 (GH43) and has a 1,356-bp gene length that encodes 451 amino acids residues. To study the enzymatic properties and substrate selectivity of PoGal3, β-1,3-galactan (AG-P-I) from larch wood arabinogalactan (LWAG) was prepared and characterized by HPLC and NMR. Using AG-P-I as substrate, purified PoGal3 exhibited an optimal pH of 5.0 and temperature of 40°C. We also discovered that Zn2+ had the strongest promoting effect on enzyme activity, increasing it by 28.6%. Substrate specificity suggests that PoGal3 functions as an exo-β-1,3-galactanase, with its greatest catalytic activity observed on AG-P-I. Hydrolytic products of AG-P-I are mainly composed of galactose and β-1,6-galactobiose. In addition, PoGal3 can catalyze hydrolysis of LWAG to produce galacto-oligomers. PoGal3 is the first enzyme identified as an exo-β-1,3-galactanase that can be used in building glycan blocks of crucial glycoconjugates to assess their biological functions.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Endocrinology and Metabolism, Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Yanbo Hu
- School of Food Sciences and Engineering, Chang Chun University, Changchun 130022, P.R. China
| | - Xuecui Yan
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, P.R. China
| | - Jing Cui
- Central Laboratory, Changchun Normal University, Changchun Jilin province, P.R. China
| | - Yibing Wang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, P.R. China
| | - Feng Luo
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, P.R. China
| | - Ye Yuan
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, P.R. China
| | - Zhenxiang Yu
- Department of Endocrinology and Metabolism, Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130021, P.R. China,Corresponding authors Y. Zhou Phone/Fax: +86-431-85098212 E-mail:
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, P.R. China,
Z. Yu Phone: +86-431-85098212 Fax: +86-431-85098212 E-mail:
| |
Collapse
|
2
|
Villa-Rivera MG, Cano-Camacho H, López-Romero E, Zavala-Páramo MG. The Role of Arabinogalactan Type II Degradation in Plant-Microbe Interactions. Front Microbiol 2021; 12:730543. [PMID: 34512607 PMCID: PMC8424115 DOI: 10.3389/fmicb.2021.730543] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Arabinogalactans (AGs) are structural polysaccharides of the plant cell wall. A small proportion of the AGs are associated with hemicellulose and pectin. Furthermore, AGs are associated with proteins forming the so-called arabinogalactan proteins (AGPs), which can be found in the plant cell wall or attached through a glycosylphosphatidylinositol (GPI) anchor to the plasma membrane. AGPs are a family of highly glycosylated proteins grouped with cell wall proteins rich in hydroxyproline. These glycoproteins have important and diverse functions in plants, such as growth, cellular differentiation, signaling, and microbe-plant interactions, and several reports suggest that carbohydrate components are crucial for AGP functions. In beneficial plant-microbe interactions, AGPs attract symbiotic species of fungi or bacteria, promote the development of infectious structures and the colonization of root tips, and furthermore, these interactions can activate plant defense mechanisms. On the other hand, plants secrete and accumulate AGPs at infection sites, creating cross-links with pectin. As part of the plant cell wall degradation machinery, beneficial and pathogenic fungi and bacteria can produce the enzymes necessary for the complete depolymerization of AGs including endo-β-(1,3), β-(1,4) and β-(1,6)-galactanases, β-(1,3/1,6) galactanases, α-L-arabinofuranosidases, β-L-arabinopyranosidases, and β-D-glucuronidases. These hydrolytic enzymes are secreted during plant-pathogen interactions and could have implications for the function of AGPs. It has been proposed that AGPs could prevent infection by pathogenic microorganisms because their degradation products generated by hydrolytic enzymes of pathogens function as damage-associated molecular patterns (DAMPs) eliciting the plant defense response. In this review, we describe the structure and function of AGs and AGPs as components of the plant cell wall. Additionally, we describe the set of enzymes secreted by microorganisms to degrade AGs from AGPs and its possible implication for plant-microbe interactions.
Collapse
Affiliation(s)
- Maria Guadalupe Villa-Rivera
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Horacio Cano-Camacho
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Mexico
| | - Everardo López-Romero
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - María Guadalupe Zavala-Páramo
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Mexico
| |
Collapse
|
3
|
Matsuyama K, Kishine N, Fujimoto Z, Sunagawa N, Kotake T, Tsumuraya Y, Samejima M, Igarashi K, Kaneko S. Unique active-site and subsite features in the arabinogalactan-degrading GH43 exo-β-1,3-galactanase from Phanerochaete chrysosporium. J Biol Chem 2020; 295:18539-18552. [PMID: 33093171 PMCID: PMC7939473 DOI: 10.1074/jbc.ra120.016149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
Arabinogalactan proteins (AGPs) are plant proteoglycans with functions in growth and development. However, these functions are largely unexplored, mainly because of the complexity of the sugar moieties. These carbohydrate sequences are generally analyzed with the aid of glycoside hydrolases. The exo-β-1,3-galactanase is a glycoside hydrolase from the basidiomycete Phanerochaete chrysosporium (Pc1,3Gal43A), which specifically cleaves AGPs. However, its structure is not known in relation to its mechanism bypassing side chains. In this study, we solved the apo and liganded structures of Pc1,3Gal43A, which reveal a glycoside hydrolase family 43 subfamily 24 (GH43_sub24) catalytic domain together with a carbohydrate-binding module family 35 (CBM35) binding domain. GH43_sub24 is known to lack the catalytic base Asp conserved among other GH43 subfamilies. Our structure in combination with kinetic analyses reveals that the tautomerized imidic acid group of Gln263 serves as the catalytic base residue instead. Pc1,3Gal43A has three subsites that continue from the bottom of the catalytic pocket to the solvent. Subsite -1 contains a space that can accommodate the C-6 methylol of Gal, enabling the enzyme to bypass the β-1,6-linked galactan side chains of AGPs. Furthermore, the galactan-binding domain in CBM35 has a different ligand interaction mechanism from other sugar-binding CBM35s, including those that bind galactomannan. Specifically, we noted a Gly → Trp substitution, which affects pyranose stacking, and an Asp → Asn substitution in the binding pocket, which recognizes β-linked rather than α-linked Gal residues. These findings should facilitate further structural analysis of AGPs and may also be helpful in engineering designer enzymes for efficient biomass utilization.
Collapse
Affiliation(s)
- Kaori Matsuyama
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Naomi Kishine
- Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Zui Fujimoto
- Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Toshihisa Kotake
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
| | - Yoichi Tsumuraya
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
| | - Masahiro Samejima
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan; Faculty of Engineering, Shinshu University, Nagano, Japan
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan; VTT Technical Research Centre of Finland, Espoo, Finland.
| | - Satoshi Kaneko
- Department of Subtropical Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
4
|
Matsuyama K, Kondo T, Igarashi K, Sakamoto T, Ishimaru M. Substrate-recognition mechanism of tomato β-galactosidase 4 using X-ray crystallography and docking simulation. PLANTA 2020; 252:72. [PMID: 33011862 DOI: 10.1007/s00425-020-03481-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
TBG4 recognize multiple linkage types substrates due to having a spatially wide subsite + 1. This feature allows the degradation of AGI, AGII, and AGP leading to the fruit ripening. β-galactosidase (EC 3. 2. 1. 23) catalyzes the hydrolysis of β-galactan and release of D-galactose. Tomato has at least 17 β-galactosidases (TBGs), of which, TBG 4 is responsible for fruit ripening. TBG4 hydrolyzes not only β-1,4-bound galactans, but also β-1,3- and β-1,6-galactans. In this study, we compared each enzyme-substrate complex using X-ray crystallography, ensemble refinement, and docking simulation to understand the broad substrate-specificity of TBG4. In subsite - 1, most interactions were conserved across each linkage type of galactobioses; however, some differences were seen in subsite + 1, owing to the huge volume of catalytic pocket. In addition to this, docking simulation indicated TBG4 to possibly have more positive subsites to recognize and hydrolyze longer galactans. Taken together, our results indicated that during tomato fruit ripening, TBG4 plays an important role by degrading arabinogalactan I (AGI), arabinogalactan II (AGII), and the carbohydrate moiety of arabinogalactan protein (AGP).
Collapse
Affiliation(s)
- Kaori Matsuyama
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Bunkyo-ku, Tokyo, 113-8657, Japan
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan
| | - Tatsuya Kondo
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tatsuji Sakamoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Megumi Ishimaru
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan.
| |
Collapse
|
5
|
Characterization of an α-L-Rhamnosidase fromStreptomyces avermitilis. Biosci Biotechnol Biochem 2014; 77:213-6. [DOI: 10.1271/bbb.120735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Knoch E, Dilokpimol A, Geshi N. Arabinogalactan proteins: focus on carbohydrate active enzymes. FRONTIERS IN PLANT SCIENCE 2014; 5:198. [PMID: 24966860 PMCID: PMC4052742 DOI: 10.3389/fpls.2014.00198] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/24/2014] [Indexed: 05/02/2023]
Abstract
Arabinogalactan proteins (AGPs) are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant-microbe interaction. However, little is known about the molecular mechanisms of their function. Numerous studies using monoclonal antibodies that recognize different AGP glycan epitopes have shown the appearance of a slightly altered AGP glycan in a specific stage of development in plant cells. Therefore, it is anticipated that the biosynthesis and degradation of AGP glycan is tightly regulated during development. Until recently, however, little was known about the enzymes involved in the metabolism of AGP glycans. In this review, we summarize recent discoveries of carbohydrate active enzymes (CAZy; http://www.cazy.org/) involved in the biosynthesis and degradation of AGP glycans, and we discuss the biological role of these enzymes in plant development.
Collapse
Affiliation(s)
| | | | - Naomi Geshi
- *Correspondence: Naomi Geshi, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark e-mail:
| |
Collapse
|