1
|
Desgrouas C, Chapus C, Desplans J, Travaille C, Pascual A, Baghdikian B, Ollivier E, Parzy D, Taudon N. In vitro antiplasmodial activity of cepharanthine. Malar J 2014; 13:327. [PMID: 25145413 PMCID: PMC4152577 DOI: 10.1186/1475-2875-13-327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/07/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND New classes of anti-malarial drugs are needed to control the alarming Plasmodium falciparum resistance toward current anti-malarial therapy. The ethnopharmacological approach allows the discovery of original chemical structures from the vegetable biodiversity. Previous studies led to the selection of a bisbenzylisoquinoline, called cepharanthine and isolated from a Cambodian plant: Stephania rotunda. Cepharanthine could exert a mechanism of action different from commonly used drugs. Potential plasmodial targets are reported here. METHODS To study the mechanism of action of cepharanthine, a combined approach using phenotypic and transcriptomic techniques was undertaken. RESULTS Cepharanthine blocked P. falciparum development in ring stage. On a culture of synchronized ring stage, the comparisons of expression profiles showed that the samples treated with 5 μM of cepharanthine (IC90) were significantly closer to the initial controls than to the final ones. After a two-way ANOVA (p-value < 0.05) on the microarray results, 1,141 probes among 9,722 presented a significant differential expression.A gene ontology analysis showed that the Maurer's clefts seem particularly down-regulated by cepharanthine. The analysis of metabolic pathways showed an impact on cell-cell interactions (cytoadherence and rosetting), glycolysis and isoprenoid pathways. Organellar functions, more particularly constituted by apicoplast and mitochondrion, are targeted too. CONCLUSION The blockage at the ring stage by cepharanthine is described for the first time. Transcriptomic approach confirmed that cepharanthine might have a potential innovative antiplasmodial mechanism of action. Thus, cepharanthine might play an ongoing role in the progress on anti-malarial drug discovery efforts.
Collapse
Affiliation(s)
- Camille Desgrouas
- />UMR-MD3, Institut de recherche biomédicale des armées, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin CS30064 13385 Marseille cedex 5, Marseille, France
| | - Charles Chapus
- />UMR-MD3, Institut de recherche biomédicale des armées, BP73 91223 Brétigny-sur-Orge, France
| | - Jérôme Desplans
- />UMR-MD3, Institut de recherche biomédicale des armées, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin CS30064 13385 Marseille cedex 5, Marseille, France
| | - Christelle Travaille
- />Trypanosome Cell Biology Unit, CNRS URA2581 and Parasitology Department, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | - Aurélie Pascual
- />Département d’Infectiologie de Terrain, Unité de Parasitologie, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Béatrice Baghdikian
- />UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin 13385 Marseille Cedex 5, Marseille, France
| | - Evelyne Ollivier
- />UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin 13385 Marseille Cedex 5, Marseille, France
| | - Daniel Parzy
- />UMR-MD3, Institut de recherche biomédicale des armées, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin CS30064 13385 Marseille cedex 5, Marseille, France
| | - Nicolas Taudon
- />UMR-MD3, Institut de recherche biomédicale des armées, BP73 91223 Brétigny-sur-Orge, France
| |
Collapse
|
2
|
Sanz S, Bandini G, Ospina D, Bernabeu M, Mariño K, Fernández-Becerra C, Izquierdo L. Biosynthesis of GDP-fucose and other sugar nucleotides in the blood stages of Plasmodium falciparum. J Biol Chem 2013; 288:16506-16517. [PMID: 23615908 DOI: 10.1074/jbc.m112.439828] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carbohydrate structures play important roles in many biological processes, including cell adhesion, cell-cell communication, and host-pathogen interactions. Sugar nucleotides are activated forms of sugars used by the cell as donors for most glycosylation reactions. Using a liquid chromatography-tandem mass spectrometry-based method, we identified and quantified the pools of UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, GDP-mannose, and GDP-fucose in Plasmodium falciparum intraerythrocytic life stages. We assembled these data with the in silico functional reconstruction of the parasite metabolic pathways obtained from the P. falciparum annotated genome, exposing new active biosynthetic routes crucial for further glycosylation reactions. Fucose is a sugar present in glycoconjugates often associated with recognition and adhesion events. Thus, the GDP-fucose precursor is essential in a wide variety of organisms. P. falciparum presents homologues of GDP-mannose 4,6-dehydratase and GDP-L-fucose synthase enzymes that are active in vitro, indicating that most GDP-fucose is formed by a de novo pathway that involves the bioconversion of GDP-mannose. Homologues for enzymes involved in a fucose salvage pathway are apparently absent in the P. falciparum genome. This is in agreement with in vivo metabolic labeling experiments showing that fucose is not significantly incorporated by the parasite. Fluorescence microscopy of epitope-tagged versions of P. falciparum GDP-mannose 4,6-dehydratase and GDP-L-fucose synthase expressed in transgenic 3D7 parasites shows that these enzymes localize in the cytoplasm of P. falciparum during the intraerythrocytic developmental cycle. Although the function of fucose in the parasite is not known, the presence of GDP-fucose suggests that the metabolite may be used for further fucosylation reactions.
Collapse
Affiliation(s)
- Sílvia Sanz
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, CEK, 1a Planta, Rosselló 149-153, 08036, Barcelona, Spain
| | - Giulia Bandini
- College of Life Sciences, University of Dundee, Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, Dundee DD15EH, Scotland, United Kingdom
| | - Diego Ospina
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, CEK, 1a Planta, Rosselló 149-153, 08036, Barcelona, Spain
| | - Maria Bernabeu
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, CEK, 1a Planta, Rosselló 149-153, 08036, Barcelona, Spain
| | - Karina Mariño
- College of Life Sciences, University of Dundee, Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, Dundee DD15EH, Scotland, United Kingdom
| | - Carmen Fernández-Becerra
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, CEK, 1a Planta, Rosselló 149-153, 08036, Barcelona, Spain
| | - Luis Izquierdo
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, CEK, 1a Planta, Rosselló 149-153, 08036, Barcelona, Spain.
| |
Collapse
|