1
|
Morais TP, Zaini PA, Chakraborty S, Gouran H, Carvalho CP, Almeida-Souza HO, Souza JB, Santos PS, Goulart LR, Luz JMQ, Nascimento R, Dandekar AM. The plant-based chimeric antimicrobial protein SlP14a-PPC20 protects tomato against bacterial wilt disease caused by Ralstonia solanacearum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:197-205. [PMID: 30823998 DOI: 10.1016/j.plantsci.2018.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/01/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Cecropin-B (CecB) is a peptide with well-established antimicrobial properties against different phytopathogenic bacteria. Despite modest action against Ralstonia solanacearum, its animal source limits the acceptance in transgenic applications. To overcome this, we selected eight alpha-helical (AH) cationic peptides derived from plant protein sequences and investigated their antimicrobial properties against R. solanacearum. Remarkably, PPC20 (a linear AH-peptide present in phosphoenolpyruvate carboxylase) has a three-fold lower lethal dose on R. solanacearum than CecB and lower toxicity to human intestinal epithelial cells. Linking PPC20 to SlP14a (part of a pathogenesis-related protein) established an apoplast-targeted protein providing a means of secreting and stabilizing the antimicrobial peptide in the plant compartment colonized by the pathogen. SlP14a is also a potential antimicrobial, homologous to a human elastase which likely targets outer membrane proteins in Gram-negative bacteria. Recombinant SlP14a-PPC20 showed antibacterial activity against R. solanacearum in vitro, making it a promising candidate for plant protection. This was confirmed with genetically-modified tomato plants engineered to express SlP14a-PPC20, in which bacterial populations in stems were reduced compared to inoculated wild-type control plants. Disease symptoms were also markedly less severe in SlP14a-PPC20-expressing plants, demonstrating a viable strategy to improve resistance against bacterial wilt in tomato.
Collapse
Affiliation(s)
- Tâmara P Morais
- Institute of Agricultural Sciences, University of Uberlândia, Uberlândia, 38410-337, MG, Brazil; Institute of Genetics and Biochemistry, University of Uberlândia, Uberlândia, 38400-902, MG, Brazil
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, 95616, CA, USA
| | - Sandeep Chakraborty
- Department of Plant Sciences, University of California, Davis, 95616, CA, USA
| | - Hossein Gouran
- Department of Plant Sciences, University of California, Davis, 95616, CA, USA
| | - Camila P Carvalho
- Department of Plant Pathology, University of São Paulo, Piracicaba, SP, 13418-900 Brazil
| | - Hebréia O Almeida-Souza
- Institute of Genetics and Biochemistry, University of Uberlândia, Uberlândia, 38400-902, MG, Brazil
| | - Jessica B Souza
- Institute of Genetics and Biochemistry, University of Uberlândia, Uberlândia, 38400-902, MG, Brazil
| | - Paula S Santos
- Institute of Genetics and Biochemistry, University of Uberlândia, Uberlândia, 38400-902, MG, Brazil
| | - Luiz R Goulart
- Institute of Genetics and Biochemistry, University of Uberlândia, Uberlândia, 38400-902, MG, Brazil; Department of Plant Sciences, University of California, Davis, 95616, CA, USA
| | - José M Q Luz
- Institute of Agricultural Sciences, University of Uberlândia, Uberlândia, 38410-337, MG, Brazil
| | - Rafael Nascimento
- Institute of Genetics and Biochemistry, University of Uberlândia, Uberlândia, 38400-902, MG, Brazil; Department of Plant Sciences, University of California, Davis, 95616, CA, USA
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, 95616, CA, USA.
| |
Collapse
|
2
|
Liu D, Liu J, Wang W, Xia L, Yang J, Sun S, Zhang F. Computational and Experimental Investigation of the Antimicrobial Peptide Cecropin XJ and its Ligands as the Impact Factors of Antibacterial Activity. FOOD BIOPHYS 2016. [DOI: 10.1007/s11483-016-9445-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|