1
|
Prasov L, Ullah E, Turriff AE, Warner BM, Conley J, Mark PR, Hufnagel RB, Huryn LA. Expanding the genotypic spectrum of Jalili syndrome: Novel CNNM4 variants and uniparental isodisomy in a north American patient cohort. Am J Med Genet A 2020; 182:493-497. [PMID: 32022389 PMCID: PMC8041260 DOI: 10.1002/ajmg.a.61484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 01/15/2023]
Abstract
Jalili syndrome is a rare multisystem disorder with the most prominent features consisting of cone-rod dystrophy and amelogenesis imperfecta. Few cases have been reported in the Americas. Here we describe a case series of patients with Jalili syndrome examined at the National Eye Institute’s Ophthalmic Genetics clinic between 2016 and 2018. Three unrelated sporadic cases were systematically evaluated for ocular phenotype and determined to have cone-rod dystrophy with bull’s eye maculopathy, photophobia, and nystagmus. All patients had amelogenesis imperfecta. Two of these patients had Guatemalan ancestry and the same novel homozygous CNNM4 variant (p.Arg236Trp c.706C > T) without evidence of consanguinity. This variant met likely pathogenic criteria by the American College of Medical Genetics guidelines. An additional patient had a homozygous deleterious variant in CNNM4 (c.279delC p.Phe93Leufs*31), which resulted from paternal uniparental isodisomy for chromosome 2p22–2q37. This individual had additional syndromic features including developmental delay and spastic diplegia, likely related to mutations at other loci. Our work highlights the genotypic variability of Jalili syndrome and expands the genotypic spectrum of this condition by describing the first series of patients seen in the United States.
Collapse
Affiliation(s)
- Lev Prasov
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland.,Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan.,Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Ehsan Ullah
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Amy E Turriff
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Blake M Warner
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Julie Conley
- Section of Pediatric Ophthalmology, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Paul R Mark
- Spectrum Health Division of Medical Genetics, Grand Rapids, Michigan
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Laryssa A Huryn
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
2
|
Giménez-Mascarell P, Oyenarte I, González-Recio I, Fernández-Rodríguez C, Corral-Rodríguez MÁ, Campos-Zarraga I, Simón J, Kostantin E, Hardy S, Díaz Quintana A, Zubillaga Lizeaga M, Merino N, Diercks T, Blanco FJ, Díaz Moreno I, Martínez-Chantar ML, Tremblay ML, Müller D, Siliqi D, Martínez-Cruz LA. Structural Insights into the Intracellular Region of the Human Magnesium Transport Mediator CNNM4. Int J Mol Sci 2019; 20:E6279. [PMID: 31842432 PMCID: PMC6940986 DOI: 10.3390/ijms20246279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
The four member family of "Cyclin and Cystathionine β-synthase (CBS) domain divalent metal cation transport mediators", CNNMs, are the least-studied mammalian magnesium transport mediators. CNNM4 is abundant in the brain and the intestinal tract, and its abnormal activity causes Jalili Syndrome. Recent findings show that suppression of CNNM4 in mice promotes malignant progression of intestinal polyps and is linked to infertility. The association of CNNM4 with phosphatases of the regenerating liver, PRLs, abrogates its Mg2+-efflux capacity, thus resulting in an increased intracellular Mg2+ concentration that favors tumor growth. Here we present the crystal structures of the two independent intracellular domains of human CNNM4, i.e., the Bateman module and the cyclic nucleotide binding-like domain (cNMP). We also derive a model structure for the full intracellular region in the absence and presence of MgATP and the oncogenic interacting partner, PRL-1. We find that only the Bateman module interacts with ATP and Mg2+, at non-overlapping sites facilitating their positive cooperativity. Furthermore, both domains dimerize autonomously, where the cNMP domain dimer forms a rigid cleft to restrict the Mg2+ induced sliding of the inserting CBS1 motives of the Bateman module, from a twisted to a flat disk shaped dimer.
Collapse
Grants
- ETORTEK IE05-147 Departamento de Industria, Innovación, Comercio y Turismo del Gobierno Vasco
- IE07-202 Departamento de Industria, Innovación, Comercio y Turismo del Gobierno Vasco
- 7/13/08/2006/11 Diputación Foral de Bizkaia
- 7/13/08/2005/14 Diputación Foral de Bizkaia
- BFU2010-17857 Ministerio de Ciencia e Innovación
- BFU2013-47531-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BES-2014-068464 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BFU2016-77408-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BES-2017-080435 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- CSD2008-00005 MICINN CONSOLIDER-INGENIO 2010 Program
- BAG MX20113 Diamond Light source
- 2013111114 Gobierno Vasco-Departamento de Salud
- SAF2017-87301-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BIO15/CA/014 EITB Maratoia
- SEV-2016-0644 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- 12.01.134/2bT4 Berlin Institute of Health
- #343439 Canadian Institute for Health Research
- MX15832-9 Diamond Light Source
- MX15832-10 Diamond Light Source
- PGC2018-096049-B100 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- CTQ2017-83810-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- PI2010-17 Departamento de Educación, Universidades e Investigación del Gobierno Vasco
- BAG 2019073624 ALBA Synchrotron
Collapse
Affiliation(s)
- Paula Giménez-Mascarell
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Iker Oyenarte
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Irene González-Recio
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Carmen Fernández-Rodríguez
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - María Ángeles Corral-Rodríguez
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Igone Campos-Zarraga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Jorge Simón
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Elie Kostantin
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; (E.K.); (S.H.); (M.L.T.)
| | - Serge Hardy
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; (E.K.); (S.H.); (M.L.T.)
| | - Antonio Díaz Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla—CSIC. Avda. Americo Vespucio 49, 41092 Sevilla, Spain; (A.D.Q.); (I.D.M.)
| | - Mara Zubillaga Lizeaga
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Spain; (M.Z.L.); (N.M.); (T.D.); (F.J.B.)
| | - Nekane Merino
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Spain; (M.Z.L.); (N.M.); (T.D.); (F.J.B.)
| | - Tammo Diercks
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Spain; (M.Z.L.); (N.M.); (T.D.); (F.J.B.)
| | - Francisco J. Blanco
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Spain; (M.Z.L.); (N.M.); (T.D.); (F.J.B.)
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Irene Díaz Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla—CSIC. Avda. Americo Vespucio 49, 41092 Sevilla, Spain; (A.D.Q.); (I.D.M.)
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain
| | - Michel L. Tremblay
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; (E.K.); (S.H.); (M.L.T.)
| | - Dominik Müller
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Disorders, Charité Universitäts medizin, 13353 Berlin, Germany;
| | - Dritan Siliqi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| |
Collapse
|
3
|
Parveen A, Mirza MU, Vanmeert M, Akhtar J, Bashir H, Khan S, Shehzad S, Froeyen M, Ahmed W, Ansar M, Wasif N. A novel pathogenic missense variant in CNNM4 underlying Jalili syndrome: Insights from molecular dynamics simulations. Mol Genet Genomic Med 2019; 7:e902. [PMID: 31347285 PMCID: PMC6732295 DOI: 10.1002/mgg3.902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/04/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022] Open
Abstract
Background Jalili syndrome (JS) is a rare cone‐rod dystrophy (CRD) associated with amelogenesis imperfecta (AI). The first clinical presentation of JS patients was published in 1988 by Jalili and Smith. Pathogenic mutations in the Cyclin and CBS Domain Divalent Metal Cation Transport Mediator 4 (CNNM4) magnesium transporter protein have been reported as the leading cause of this anomaly. Methods In the present study, a clinical and genetic investigation was performed in a consanguineous family of Pakistani origin, showing characteristic features of JS. Sanger sequencing was successfully used to identify the causative variant in CNNM4. Molecular dynamics (MD) simulations were performed to study the effect of amino acid change over CNNM4 protein. Results Sequence analysis of CNNM4 revealed a novel missense variant (c.1220G>T, p.Arg407Leu) in exon‐1 encoding cystathionine‐β‐synthase (CBS) domain. To comprehend the mutational consequences in the structure, the mutant p.Arg407Leu was modeled together with a previously reported variant (c.1484C>T, p.Thr495Ile) in the same domain. Additionally, docking analysis deciphered the binding mode of the adenosine triphosphate (ATP) cofactor. Furthermore, 60ns MD simulations were carried out on wild type (p.Arg407/p.Thr495) and mutants (p.Arg407Leu/p.Thr495Ile) to understand the structural and energetic changes in protein structure and its dynamic behavior. An evident conformational shift of ATP in the binding site was observed in simulated mutants disrupting the native ATP‐binding mode. Conclusion The novel identified variant in CNNM4 is the first report from the Pakistani population. Overall, the study is valuable and may give a novel insight into metal transport in visual function and biomineralization.
Collapse
Affiliation(s)
- Asia Parveen
- Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRiMM), The University of Lahore, Lahore, Pakistan.,Faculty of Life Sciences, University of Central Punjab (UCP), Lahore, Pakistan
| | - Muhammad U Mirza
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Michiel Vanmeert
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Javed Akhtar
- Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRiMM), The University of Lahore, Lahore, Pakistan
| | - Hina Bashir
- Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRiMM), The University of Lahore, Lahore, Pakistan.,Department of Biochemistry, Sharif Medical and Dental College, Lahore, Pakistan
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Saqib Shehzad
- Faculty of Life Sciences, University of Central Punjab (UCP), Lahore, Pakistan
| | - Matheus Froeyen
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Wasim Ahmed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naveed Wasif
- Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRiMM), The University of Lahore, Lahore, Pakistan.,Institute of Human Genetics, University of Ulm & University Hospital, Ulm, Germany.,Institute of Human Genetics, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
4
|
Daneshmandpour Y, Darvish H, Pashazadeh F, Emamalizadeh B. Features, genetics and their correlation in Jalili syndrome: a systematic review. J Med Genet 2019; 56:358-369. [DOI: 10.1136/jmedgenet-2018-105716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 11/03/2022]
Abstract
Jalili syndrome is a rare genetic disorder first identified by Jalili in Gaza. Amelogenesis imperfecta and cone-rode dystrophy are simultaneously seen in Jalili syndrome patients as the main and primary manifestations. Molecular analysis has revealed that theCNNM4gene is responsible for this rare syndrome. Jalili syndrome has been observed in many countries around the world, especially in the Middle East and North Africa. In the current scoping systematic review we searched electronic databases to find studies related to Jalili syndrome. In this review we summarise the reported clinical symptoms,CNNM4gene and protein structure,CNNM4mutations, attempts to reach a genotype-phenotype correlation, the functional role ofCNNM4mutations, and epidemiological aspects of Jalili syndrome. In addition, we have analysed the reported mutations in mutation effect prediction databases in order to gain a better understanding of the mutation’s outcomes.
Collapse
|
5
|
Melin L, Lundgren J, Malmberg P, Norén JG, Taube F, Cornell DH. XRMA and ToF-SIMS Analysis of Normal and Hypomineralized Enamel. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:407-421. [PMID: 25674916 DOI: 10.1017/s1431927615000033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Molar incisor hypomineralization (MIH) is a developmental disturbance of the enamel. This study presents analyses of hypomineralized and normal enamel in first molar teeth diagnosed with MIH, utilizing time-of-flight secondary ion mass spectrometry area analyses and X-ray microanalysis of area and spot profiles in uncoated samples between gold lines which provide electrical conductivity. Statistical analysis of mean values allows discrimination of normal from MIH enamel, which has higher Mg and lower Na and P. Inductive analysis using complete data sets for profiles from the enamel surface to the enamel-dentin junction found that Mg, Cl and position in the profile provide useful discrimination criteria. Element profiles provide a visual complement to the inductive analysis and several elements also provide insight into the development of both normal and MIH enamel. The higher Mg content and different Cl profiles of hypomineralized enamel compared with normal enamel are probably related to a relatively short period during the development of ameloblasts between birth and the 1st year of life.
Collapse
Affiliation(s)
- Lisa Melin
- 1Department of Pediatric Dentistry,Institute of Odontology at the Sahlgrenska Academy,University of Gothenburg,P.O. Box 450,SE 405 30 Gothenburg,Sweden
| | - Jesper Lundgren
- 2Department of Psychology,University of Gothenburg,P.O. Box 500,SE 405 30 Gothenburg,Sweden
| | - Per Malmberg
- 3Department of Chemical and Biological Engineering,Chalmers University of Technology,Kemivägen 10,412 96 Gothenburg,Sweden
| | - Jörgen G Norén
- 1Department of Pediatric Dentistry,Institute of Odontology at the Sahlgrenska Academy,University of Gothenburg,P.O. Box 450,SE 405 30 Gothenburg,Sweden
| | - Fabian Taube
- 4Department of Occupational and Environmental Medicine,Sahlgrenska University Hospital,P.O. Box 414,SE 405 30 Gothenburg,Sweden
| | - David H Cornell
- 5Department of Earth Sciences,University of Gothenburg,P.O. Box 460,SE 405 30 Gothenburg,Sweden
| |
Collapse
|
6
|
Nucleotide binding triggers a conformational change of the CBS module of the magnesium transporter CNNM2 from a twisted towards a flat structure. Biochem J 2015; 464:23-34. [PMID: 25184538 DOI: 10.1042/bj20140409] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent studies suggest CNNM2 (cyclin M2) to be part of the long-sought basolateral Mg2+ extruder at the renal distal convoluted tubule, or its regulator. In the present study, we explore structural features and ligand-binding capacities of the Bateman module of CNNM2 (residues 429-584), an intracellular domain structurally equivalent to the region involved in Mg2+ handling by the bacterial Mg2+ transporter MgtE, and AMP binding by the Mg2+ efflux protein CorC. Additionally, we studied the structural impact of the pathogenic mutation T568I located in this region. Our crystal structures reveal that nucleotides such as AMP, ADP or ATP bind at only one of the two cavities present in CNNM2429-584. Mg2+ favours ATP binding by alleviating the otherwise negative charge repulsion existing between acidic residues and the polyphosphate group of ATP. In crystals CNNM2429-584 forms parallel dimers, commonly referred to as CBS (cystathionine β-synthase) modules. Interestingly, nucleotide binding triggers a conformational change in the CBS module from a twisted towards a flat disc-like structure that mostly affects the structural elements connecting the Bateman module with the transmembrane region. We furthermore show that the T568I mutation, which causes dominant hypomagnesaemia, mimics the structural effect induced by nucleotide binding. The results of the present study suggest that the T568I mutation exerts its pathogenic effect in humans by constraining the conformational equilibrium of the CBS module of CNNM2, which becomes 'locked' in its flat form.
Collapse
|
7
|
Jahandideh S, Jaroszewski L, Godzik A. Improving the chances of successful protein structure determination with a random forest classifier. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:627-35. [PMID: 24598732 PMCID: PMC3949519 DOI: 10.1107/s1399004713032070] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 11/25/2013] [Indexed: 01/29/2023]
Abstract
Obtaining diffraction quality crystals remains one of the major bottlenecks in structural biology. The ability to predict the chances of crystallization from the amino-acid sequence of the protein can, at least partly, address this problem by allowing a crystallographer to select homologs that are more likely to succeed and/or to modify the sequence of the target to avoid features that are detrimental to successful crystallization. In 2007, the now widely used XtalPred algorithm [Slabinski et al. (2007), Protein Sci. 16, 2472-2482] was developed. XtalPred classifies proteins into five `crystallization classes' based on a simple statistical analysis of the physicochemical features of a protein. Here, towards the same goal, advanced machine-learning methods are applied and, in addition, the predictive potential of additional protein features such as predicted surface ruggedness, hydrophobicity, side-chain entropy of surface residues and amino-acid composition of the predicted protein surface are tested. The new XtalPred-RF (random forest) achieves significant improvement of the prediction of crystallization success over the original XtalPred. To illustrate this, XtalPred-RF was tested by revisiting target selection from 271 Pfam families targeted by the Joint Center for Structural Genomics (JCSG) in PSI-2, and it was estimated that the number of targets entered into the protein-production and crystallization pipeline could have been reduced by 30% without lowering the number of families for which the first structures were solved. The prediction improvement depends on the subset of targets used as a testing set and reaches 100% (i.e. twofold) for the top class of predicted targets.
Collapse
Affiliation(s)
- Samad Jahandideh
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92307, USA
- Joint Center for Structural Genomics, http://www.jcsg.org/, USA
| | - Lukasz Jaroszewski
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92307, USA
- Joint Center for Structural Genomics, http://www.jcsg.org/, USA
- Center for Research in Biological Systems (CRBS), University of California, San Diego, La Jolla, California USA
| | - Adam Godzik
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92307, USA
- Joint Center for Structural Genomics, http://www.jcsg.org/, USA
- Center for Research in Biological Systems (CRBS), University of California, San Diego, La Jolla, California USA
| |
Collapse
|
8
|
Gómez-García I, Stuiver M, Ereño J, Oyenarte I, Corral-Rodríguez MA, Müller D, Martínez-Cruz LA. Purification, crystallization and preliminary crystallographic analysis of the CBS-domain pair of cyclin M2 (CNNM2). Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1198-203. [PMID: 23027747 PMCID: PMC3497979 DOI: 10.1107/s1744309112035348] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/09/2012] [Indexed: 05/13/2024]
Abstract
This work describes the purification and preliminary crystallographic analysis of the CBS-domain pair of the murine CNNM2 magnesium transporter (formerly known as ancient domain protein 2; ACDP2), which consists of a pair of cystathionine β-synthase (CBS) motifs and has 100% sequence identity to its human homologue. CNNM proteins represent the least-studied members of the eight different types of magnesium transporters identified to date in mammals. In humans, the CNNM family is encoded by four genes: CNNM1-4. CNNM1 acts as a cytosolic copper chaperone, whereas CNNM2 and CNNM4 have been associated with magnesium handling. Interestingly, mutations in the CNNM2 gene cause familial dominant hypomagnesaemia (MIM:607803), a rare human disorder characterized by renal and intestinal magnesium (Mg(2+)) wasting, which may lead to symptoms of Mg(2+) depletion such as tetany, seizures and cardiac arrhythmias. This manuscript describes the preliminary crystallographic analysis of two different crystal habits of a truncated form of the protein containing its regulatory CBS-domain pair, which has been reported to host the pathological mutation T568I in humans. The crystals belonged to space groups P2(1)2(1)2 and I222 (or I2(1)2(1)2(1)) and diffracted X-rays to 2.0 and 3.6 Å resolution, respectively, using synchrotron radiation.
Collapse
Affiliation(s)
- Inmaculada Gómez-García
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Bizkaia, Spain
| | - Marchel Stuiver
- Department of Pediatric Nephrology, Charité Universitätsmedizin, 13353 Berlin, Germany
| | - June Ereño
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Bizkaia, Spain
| | - Iker Oyenarte
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Bizkaia, Spain
| | | | - Dominik Müller
- Department of Pediatric Nephrology, Charité Universitätsmedizin, 13353 Berlin, Germany
| | - Luis Alfonso Martínez-Cruz
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Bizkaia, Spain
| |
Collapse
|
9
|
de Baaij JHF, Stuiver M, Meij IC, Lainez S, Kopplin K, Venselaar H, Müller D, Bindels RJM, Hoenderop JGJ. Membrane topology and intracellular processing of cyclin M2 (CNNM2). J Biol Chem 2012. [PMID: 22399287 DOI: 10.11074/jbc.m13112.342204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Recently, mutations in the cyclin M2 (CNNM2) gene were identified to be causative for severe hypomagnesemia. In kidney, CNNM2 is a basolaterally expressed protein with predominant expression in the distal convoluted tubule. Transcellular magnesium (Mg(2+)) reabsorption in the distal convoluted tubule represents the final step before Mg(2+) is excreted into the urine, thus fine-tuning its final excretion via a tightly regulated mechanism. The present study aims to get insight in the structure of CNNM2 and to characterize its post-translational modifications. Here, membrane topology studies using intramolecular epitopes and immunocytochemistry showed that CNNM2 has an extracellular N terminus and an intracellular C terminus. This suggests that one of the predicted transmembrane regions might be re-entrant. By homology modeling, we demonstrated that the loss-of-function mutation as found in patients disturbs the potential ATP binding by the intracellular cystathionine β-synthase domains. In addition, the cellular processing pathway of CNNM2 was exposed in detail. In the endoplasmic reticulum, the signal peptidase complex cleaves off a large N-terminal signal peptide of about 64 amino acids. Mutagenesis screening showed that CNNM2 is glycosylated at residue Asn-112, stabilizing CNNM2 on the plasma membrane. Interestingly, co-immunoprecipitation studies evidenced that CNNM2a forms heterodimers with the smaller isoform CNNM2b. These new findings on CNNM2 structure and processing may aid to elucidate the physiological role of CNNM2 in Mg(2+) reabsorption in the kidney.
Collapse
Affiliation(s)
- Jeroen H F de Baaij
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
de Baaij JHF, Stuiver M, Meij IC, Lainez S, Kopplin K, Venselaar H, Müller D, Bindels RJM, Hoenderop JGJ. Membrane topology and intracellular processing of cyclin M2 (CNNM2). J Biol Chem 2012; 287:13644-55. [PMID: 22399287 DOI: 10.1074/jbc.m112.342204] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recently, mutations in the cyclin M2 (CNNM2) gene were identified to be causative for severe hypomagnesemia. In kidney, CNNM2 is a basolaterally expressed protein with predominant expression in the distal convoluted tubule. Transcellular magnesium (Mg(2+)) reabsorption in the distal convoluted tubule represents the final step before Mg(2+) is excreted into the urine, thus fine-tuning its final excretion via a tightly regulated mechanism. The present study aims to get insight in the structure of CNNM2 and to characterize its post-translational modifications. Here, membrane topology studies using intramolecular epitopes and immunocytochemistry showed that CNNM2 has an extracellular N terminus and an intracellular C terminus. This suggests that one of the predicted transmembrane regions might be re-entrant. By homology modeling, we demonstrated that the loss-of-function mutation as found in patients disturbs the potential ATP binding by the intracellular cystathionine β-synthase domains. In addition, the cellular processing pathway of CNNM2 was exposed in detail. In the endoplasmic reticulum, the signal peptidase complex cleaves off a large N-terminal signal peptide of about 64 amino acids. Mutagenesis screening showed that CNNM2 is glycosylated at residue Asn-112, stabilizing CNNM2 on the plasma membrane. Interestingly, co-immunoprecipitation studies evidenced that CNNM2a forms heterodimers with the smaller isoform CNNM2b. These new findings on CNNM2 structure and processing may aid to elucidate the physiological role of CNNM2 in Mg(2+) reabsorption in the kidney.
Collapse
Affiliation(s)
- Jeroen H F de Baaij
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Einspahr H, Weiss MS. Crystals on the cover 2012. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1. [PMID: 22232160 PMCID: PMC3253823 DOI: 10.1107/s1744309111053759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 12/23/2011] [Indexed: 11/10/2022]
Abstract
Editorial.
Collapse
Affiliation(s)
| | - Manfred S. Weiss
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography (BESSY-MX), Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| |
Collapse
|