1
|
Ghosh S, Dhanasingh, I, Ryu J, Kim SW, Lee SH. Crystal Structure of Cytochrome cL from the Aquatic Methylotrophic Bacterium Methylophaga aminisulfidivorans MP T. J Microbiol Biotechnol 2020; 30:1261-1271. [PMID: 32627749 PMCID: PMC9728263 DOI: 10.4014/jmb.2006.06029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022]
Abstract
Cytochrome cL (CytcL) is an essential protein in the process of methanol oxidation in methylotrophs. It receives an electron from the pyrroloquinoline quinone (PQQ) cofactor of methanol dehydrogenase (MDH) to produce formaldehyde. The direct electron transfer mechanism between CytcL and MDH remains unknown due to the lack of structural information. To help gain a better understanding of the mechanism, we determined the first crystal structure of heme c containing CytcL from the aquatic methylotrophic bacterium Methylophaga aminisulfidivorans MPT at 2.13 Å resolution. The crystal structure of Ma-CytcL revealed its unique features compared to those of the terrestrial homologues. Apart from Fe in heme, three additional metal ion binding sites for Na+ , Ca+ , and Fe2+ were found, wherein the ions mostly formed coordination bonds with the amino acid residues on the loop (G93-Y111) that interacts with heme. Therefore, these ions seemed to enhance the stability of heme insertion by increasing the loop's steadiness. The basic N-terminal end, together with helix α4 and loop (G126 to Y136), contributed positive charge to the region. In contrast, the acidic C-terminal end provided a negatively charged surface, yielding several electrostatic contact points with partner proteins for electron transfer. These exceptional features of Ma-CytcL, along with the structural information of MDH, led us to hypothesize the need for an adapter protein bridging MDH to CytcL within appropriate proximity for electron transfer. With this knowledge in mind, the methanol oxidation complex reconstitution in vitro could be utilized to produce metabolic intermediates at the industry level.
Collapse
Affiliation(s)
- Suparna Ghosh
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju 61452, Republic of Korea,Department of Biomedical Sciences, Graduate School of Chosun University, Gwangju 61452, Republic of Korea
| | - Immanuel Dhanasingh,
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju 61452, Republic of Korea,Department of Biomedical Sciences, Graduate School of Chosun University, Gwangju 61452, Republic of Korea
| | - Jaewon Ryu
- Department of Energy Convergence, Graduate School of Chosun University, Gwangju 61452, Republic of Korea
| | - Si Wouk Kim
- Department of Environmental Engineering, Chosun University, Gwangju 61452, Republic of Korea,Department of Energy Convergence, Graduate School of Chosun University, Gwangju 61452, Republic of Korea
| | - Sung Haeng Lee
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju 61452, Republic of Korea,Department of Biomedical Sciences, Graduate School of Chosun University, Gwangju 61452, Republic of Korea,Corresponding author Phone: +82-62-230-6381 Fax: +82-62-228-7791 E-mail:
| |
Collapse
|
2
|
Howat AM, Vollmers J, Taubert M, Grob C, Dixon JL, Todd JD, Chen Y, Kaster AK, Murrell JC. Comparative Genomics and Mutational Analysis Reveals a Novel XoxF-Utilizing Methylotroph in the Roseobacter Group Isolated From the Marine Environment. Front Microbiol 2018; 9:766. [PMID: 29755426 PMCID: PMC5934484 DOI: 10.3389/fmicb.2018.00766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/04/2018] [Indexed: 11/13/2022] Open
Abstract
The Roseobacter group comprises a significant group of marine bacteria which are involved in global carbon and sulfur cycles. Some members are methylotrophs, using one-carbon compounds as a carbon and energy source. It has recently been shown that methylotrophs generally require a rare earth element when using the methanol dehydrogenase enzyme XoxF for growth on methanol. Addition of lanthanum to methanol enrichments of coastal seawater facilitated the isolation of a novel methylotroph in the Roseobacter group: Marinibacterium anthonyi strain La 6. Mutation of xoxF5 revealed the essential nature of this gene during growth on methanol and ethanol. Physiological characterization demonstrated the metabolic versatility of this strain. Genome sequencing revealed that strain La 6 has the largest genome of all Roseobacter group members sequenced to date, at 7.18 Mbp. Multilocus sequence analysis (MLSA) showed that whilst it displays the highest core gene sequence similarity with subgroup 1 of the Roseobacter group, it shares very little of its pangenome, suggesting unique genetic adaptations. This research revealed that the addition of lanthanides to isolation procedures was key to cultivating novel XoxF-utilizing methylotrophs from the marine environment, whilst genome sequencing and MLSA provided insights into their potential genetic adaptations and relationship to the wider community.
Collapse
Affiliation(s)
- Alexandra M. Howat
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - John Vollmers
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Martin Taubert
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Carolina Grob
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | | | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - J. C. Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
3
|
Lv H, Sahin N, Tani A. Isolation and genomic characterization ofNovimethylophilus kurashikiensisgen. nov. sp. nov., a new lanthanide-dependent methylotrophic species ofMethylophilaceae. Environ Microbiol 2018; 20:1204-1223. [DOI: 10.1111/1462-2920.14062] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/17/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Haoxin Lv
- Institute of Plant Science and Resources, Okayama University; Okayama Japan
| | - Nurettin Sahin
- Egitim Fakultesi, Mugla Sitki Kocman University; 48170 Kotekli, Mugla Turkey
| | - Akio Tani
- Institute of Plant Science and Resources, Okayama University; Okayama Japan
| |
Collapse
|
4
|
The crystal structure of methanol dehydrogenase, a quinoprotein from the marine methylotrophic bacterium Methylophaga aminisulfidivorans MPT. J Microbiol 2018; 56:246-254. [DOI: 10.1007/s12275-018-7483-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 10/17/2022]
|
5
|
XoxF-type methanol dehydrogenase from the anaerobic methanotroph “Candidatus Methylomirabilis oxyfera”. Appl Environ Microbiol 2016; 81:1442-51. [PMID: 25527536 DOI: 10.1128/aem.03292-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
“Candidatus Methylomirabilis oxyfera” is a newly discovered anaerobic methanotroph that, surprisingly, oxidizes methane through an aerobic methane oxidation pathway. The second step in this aerobic pathway is the oxidation of methanol. In Gramnegative bacteria, the reaction is catalyzed by pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH). The genome of “Ca. Methylomirabilis oxyfera” putatively encodes three different MDHs that are localized in one large gene cluster: one so-called MxaFI-type MDH and two XoxF-type MDHs (XoxF1 and XoxF2). MxaFI MDHs represent the canonical enzymes, which are composed of two PQQ-containing large (α) subunits (MxaF) and two small (β) subunits (MxaI). XoxF MDHs are novel, ecologically widespread, but poorly investigated types of MDHs that can be phylogenetically divided into at least five different clades. The XoxF MDHs described thus far are homodimeric proteins containing a large subunit only. Here, we purified a heterotetrameric MDH from “Ca. Methylomirabilis oxyfera” that consisted of two XoxF and two MxaI subunits. The enzyme was localized in the periplasm of “Ca. Methylomirabilis oxyfera” cells and catalyzed methanol oxidation with appreciable specific activity and affinity (Vmax of 10 micromole min(-1) mg(-1) protein, Km of 17 microM). PQQ was present as the prosthetic group,which has to be taken up from the environment since the known gene inventory required for the synthesis of this cofactor is lacking. The MDH from “Ca. Methylomirabilis oxyfera” is the first representative of type 1 XoxF proteins to be described.
Collapse
|
6
|
Keltjens JT, Pol A, Reimann J, Op den Camp HJM. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Appl Microbiol Biotechnol 2014; 98:6163-83. [PMID: 24816778 DOI: 10.1007/s00253-014-5766-8] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 01/06/2023]
Abstract
Methanol dehydrogenase (MDH) catalyzes the first step in methanol use by methylotrophic bacteria and the second step in methane conversion by methanotrophs. Gram-negative bacteria possess an MDH with pyrroloquinoline quinone (PQQ) as its catalytic center. This MDH belongs to the broad class of eight-bladed β propeller quinoproteins, which comprise a range of other alcohol and aldehyde dehydrogenases. A well-investigated MDH is the heterotetrameric MxaFI-MDH, which is composed of two large catalytic subunits (MxaF) and two small subunits (MxaI). MxaFI-MDHs bind calcium as a cofactor that assists PQQ in catalysis. Genomic analyses indicated the existence of another MDH distantly related to the MxaFI-MDHs. Recently, several of these so-called XoxF-MDHs have been isolated. XoxF-MDHs described thus far are homodimeric proteins lacking the small subunit and possess a rare-earth element (REE) instead of calcium. The presence of such REE may confer XoxF-MDHs a superior catalytic efficiency. Moreover, XoxF-MDHs are able to oxidize methanol to formate, rather than to formaldehyde as MxaFI-MDHs do. While structures of MxaFI- and XoxF-MDH are conserved, also regarding the binding of PQQ, the accommodation of a REE requires the presence of a specific aspartate residue near the catalytic site. XoxF-MDHs containing such REE-binding motif are abundantly present in genomes of methylotrophic and methanotrophic microorganisms and also in organisms that hitherto are not known for such lifestyle. Moreover, sequence analyses suggest that XoxF-MDHs represent only a small part of putative REE-containing quinoproteins, together covering an unexploited potential of metabolic functions.
Collapse
Affiliation(s)
- Jan T Keltjens
- Department of Microbiology, Institute of Wetland and Water Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
7
|
Choi JM, Kang JH, Lee DW, Kim SW, Lee SH. Crystallization and preliminary X-ray crystallographic analysis of MxaJ, a component of the methanol-oxidizing system operon from the marine bacterium Methylophaga aminisulfidivorans MPT. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:902-5. [PMID: 23908039 DOI: 10.1107/s1744309113017983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 06/29/2013] [Indexed: 11/10/2022]
Abstract
The methanol-oxidizing system (mox) is essential for methylotrophic bacteria to extract energy during the oxidoreduction reaction and consists of a series of electron-transfer proteins encoded by the mox operon. One of the key enzymes is the α₂β₂ methanol dehydrogenase complex (type I MDH), which converts methanol to formaldehyde during the 2e⁻ transfer through the prosthetic group pyrroloquinoline quinone. MxaJ, a product of mxaJ of the mox operon, is a component of the MDH complex and enhances the methanol-converting activity of the MDH complex. However, the exact functional mechanism of MxaJ in the complex is not clearly known. To investigate the functional role of MxaJ in MDH activity, an attempt was made to determine its crystal structure. Diffraction data were collected from a selenomethionine-substituted crystal to 1.92 Å resolution at the peak wavelength. The crystal belonged to the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a = 37.127, b = 63.761, c = 99.246 Å. The asymmetric unit contained one MxaJ molecule with a calculated Matthews coefficient of 2.11 Ų Da⁻¹ and a solvent content of 41.7%. Three-dimensional structure determination of the MxaJ protein is currently in progress by the single-wavelength anomalous dispersion technique and model building.
Collapse
Affiliation(s)
- Jin Myung Choi
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju 501-759, Republic of Korea
| | | | | | | | | |
Collapse
|