1
|
Lau MH, Madika A, Zhang Y, Minton NP. Parageobacillus thermoglucosidasius Strain Engineering Using a Theophylline Responsive RiboCas for Controlled Gene Expression. ACS Synth Biol 2024; 13:1237-1245. [PMID: 38517011 PMCID: PMC11036489 DOI: 10.1021/acssynbio.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
The relentless increase in atmospheric greenhouse gas concentrations as a consequence of the exploitation of fossil resources compels the adoption of sustainable routes to chemical and fuel manufacture based on biological fermentation processes. The use of thermophilic chassis in such processes is an attractive proposition; however, their effective exploitation will require improved genome editing tools. In the case of the industrially relevant chassis Parageobacillus thermoglucosidasius, CRISPR/Cas9-based gene editing has been demonstrated. The constitutive promoter used, however, accentuates the deleterious nature of Cas9, causing decreased transformation and low editing efficiencies, together with an increased likelihood of off-target effects or alternative mutations. Here, we rectify this issue by controlling the expression of Cas9 through the use of a synthetic riboswitch that is dependent on the nonmetabolized, nontoxic, and cheap inducer, theophylline. We demonstrate that the riboswitches are dose-dependent, allowing for controlled expression of the target gene. Through their use, we were then able to address the deleterious nature of Cas9 and produce an inducible system, RiboCas93. The benefits of RiboCas93 were demonstrated by increased transformation efficiency of the editing vectors, improved efficiency in mutant generation (100%), and a reduction of Cas9 toxicity, as indicated by a reduction in the number of single nucleotide polymorphisms (SNPs) observed. This new system provides a quick and efficient way to produce mutants in P. thermoglucosidasius.
Collapse
Affiliation(s)
- Matthew
S. H. Lau
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), Biodiscovery Institute,
School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Abubakar Madika
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), Biodiscovery Institute,
School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
- Department
of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria 810107, Nigeria
| | - Ying Zhang
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), Biodiscovery Institute,
School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Nigel P. Minton
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), Biodiscovery Institute,
School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
- NIHR
Nottingham Biomedical Research Centre, Nottingham
University Hospitals NHS Trust and The University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
2
|
Lau MSH, Sheng L, Zhang Y, Minton NP. Development of a Suite of Tools for Genome Editing in Parageobacillus thermoglucosidasius and Their Use to Identify the Potential of a Native Plasmid in the Generation of Stable Engineered Strains. ACS Synth Biol 2021; 10:1739-1749. [PMID: 34197093 DOI: 10.1021/acssynbio.1c00138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The relentless rise in the levels of atmospheric greenhouse gases caused by the exploitation of fossil fuel necessitates the development of more environmentally friendly routes to the manufacture of chemicals and fuels. The exploitation of a fermentative process that uses a thermophilic chassis represents an attractive option. Its use, however, is hindered by a dearth of genetic tools. Here we expand on those available for the engineering of the industrial chassis Parageobacillus thermoglucosidasius through the assembly and testing of a range of promoters, ribosome binding sites, reporter genes, and the implementation of CRISPR/Cas9 genome editing based on two different thermostable Cas9 nucleases. The latter were used to demonstrate that the deletion of the two native plasmids carried by P. thermoglucosidasius, pNCI001 and pNCI002, either singly or in combination, had no discernible effects on the overall phenotypic characteristics of the organism. Through the CRISPR/Cas9-mediated insertion of the gene encoding a novel fluorescent reporter, eCGP123, we showed that pNCI001 exhibited a high degree of segregational stability. As the relatively higher copy number of pNCI001 led to higher levels of eCGP123 expression than when the same gene was integrated into the chromosome, we propose that pNCI001 represents the preferred option for the integration of metabolic operons when stable commercial strains are required.
Collapse
Affiliation(s)
- Matthew S. H. Lau
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Lili Sheng
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Ying Zhang
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Nigel P. Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
3
|
Li XD, Tan ZZ, Ding WL, Hou YN, Kong CD, Zhao BQ, Zhao KH. Design of small monomeric and highly bright near-infrared fluorescent proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1608-1617. [DOI: 10.1016/j.bbamcr.2019.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/21/2019] [Accepted: 06/30/2019] [Indexed: 11/16/2022]
|
4
|
Close DW, Don Paul C, Langan PS, Wilce MC, Traore DA, Halfmann R, Rocha RC, Waldo GS, Payne RJ, Rucker JB, Prescott M, Bradbury AR. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering. Proteins 2015; 83:1225-37. [PMID: 25287913 PMCID: PMC4592778 DOI: 10.1002/prot.24699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/16/2014] [Accepted: 09/27/2014] [Indexed: 01/27/2023]
Abstract
In this article, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization.
Collapse
Affiliation(s)
- Devin W. Close
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Craig Don Paul
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Patricia S. Langan
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Matthew C.J. Wilce
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Daouda A.K. Traore
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Randal Halfmann
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Reginaldo C. Rocha
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Geoffery S. Waldo
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | | | - Mark Prescott
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | | |
Collapse
|
5
|
Don Paul C, Traore DAK, Olsen S, Devenish RJ, Close DW, Bell TDM, Bradbury A, Wilce MCJ, Prescott M. X-Ray Crystal Structure and Properties of Phanta, a Weakly Fluorescent Photochromic GFP-Like Protein. PLoS One 2015; 10:e0123338. [PMID: 25923520 PMCID: PMC4414407 DOI: 10.1371/journal.pone.0123338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/02/2015] [Indexed: 01/07/2023] Open
Abstract
Phanta is a reversibly photoswitching chromoprotein (ΦF, 0.003), useful for pcFRET, that was isolated from a mutagenesis screen of the bright green fluorescent eCGP123 (ΦF, 0.8). We have investigated the contribution of substitutions at positions His193, Thr69 and Gln62, individually and in combination, to the optical properties of Phanta. Single amino acid substitutions at position 193 resulted in proteins with very low ΦF, indicating the importance of this position in controlling the fluorescence efficiency of the variant proteins. The substitution Thr69Val in Phanta was important for supressing the formation of a protonated chromophore species observed in some His193 substituted variants, whereas the substitution Gln62Met did not significantly contribute to the useful optical properties of Phanta. X-ray crystal structures for Phanta (2.3 Å), eCGP123T69V (2.0 Å) and eCGP123H193Q (2.2 Å) in their non-photoswitched state were determined, revealing the presence of a cis-coplanar chromophore. We conclude that changes in the hydrogen-bonding network supporting the cis-chromophore, and its contacts with the surrounding protein matrix, are responsible for the low fluorescence emission of eCGP123 variants containing a His193 substitution.
Collapse
Affiliation(s)
- Craig Don Paul
- Department of Neuro- and Sensory Physiology, University Medicine, Göttingen, 37073, Göttingen, Germany
| | - Daouda A. K. Traore
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton campus, Victoria, 3800, Australia
| | - Seth Olsen
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Rodney J. Devenish
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton campus, Victoria, 3800, Australia
| | - Devin W. Close
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America
| | - Toby D. M. Bell
- School of Chemistry, Monash University, Clayton campus, Victoria, 3800, Australia
| | - Andrew Bradbury
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America
| | - Matthew C. J. Wilce
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton campus, Victoria, 3800, Australia
- * E-mail: (MP); (MCJW)
| | - Mark Prescott
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton campus, Victoria, 3800, Australia
- * E-mail: (MP); (MCJW)
| |
Collapse
|
6
|
Ebrecht R, Don Paul C, Wouters FS. Fluorescence lifetime imaging microscopy in the medical sciences. PROTOPLASMA 2014; 251:293-305. [PMID: 24390249 DOI: 10.1007/s00709-013-0598-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
The steady improvement in the imaging of cellular processes in living tissue over the last 10-15 years through the use of various fluorophores including organic dyes, fluorescent proteins and quantum dots, has made observing biological events common practice. Advances in imaging and recording technology have made it possible to exploit a fluorophore's fluorescence lifetime. The fluorescence lifetime is an intrinsic parameter that is unique for each fluorophore, and that is highly sensitive to its immediate environment and/or the photophysical coupling to other fluorophores by the phenomenon Förster resonance energy transfer (FRET). The fluorescence lifetime has become an important tool in the construction of optical bioassays for various cellular activities and reactions. The measurement of the fluorescence lifetime is possible in two formats; time domain or frequency domain, each with their own advantages. Fluorescence lifetime imaging applications have now progressed to a state where, besides their utility in cell biological research, they can be employed as clinical diagnostic tools. This review highlights the multitude of fluorophores, techniques and clinical applications that make use of fluorescence lifetime imaging microscopy (FLIM).
Collapse
Affiliation(s)
- René Ebrecht
- Department of Neuro- and Sensory Physiology, University Medicine Göttingen, 37073, Göttingen, Germany
| | | | | |
Collapse
|
7
|
Don Paul C, Kiss C, Traore DAK, Gong L, Wilce MCJ, Devenish RJ, Bradbury A, Prescott M. Phanta: a non-fluorescent photochromic acceptor for pcFRET. PLoS One 2013; 8:e75835. [PMID: 24098733 PMCID: PMC3786930 DOI: 10.1371/journal.pone.0075835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/22/2013] [Indexed: 11/24/2022] Open
Abstract
We have developed an orange non-fluorescent photochromic protein (quantum yield, 0.003) we call Phanta that is useful as an acceptor in pcFRET applications. Phanta can be repeatedly inter-converted between the two absorbing states by alternate exposure to cyan and violet light. The absorption spectra of Phanta in one absorbing state shows excellent overlap with the emission spectra of a number of donor green fluorescent proteins including the commonly used EGFP. We show that the Phanta-EGFP FRET pair is suitable for monitoring the activation of caspase 3 in live cells using readily available instrumentation and a simple protocol that requires the acquisition of two donor emission images corresponding to Phanta in each of its photoswitched states. This the first report of a genetically encoded non-fluorescent acceptor for pcFRET.
Collapse
Affiliation(s)
- Craig Don Paul
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Csaba Kiss
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Daouda A. K. Traore
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Lan Gong
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Matthew C. J. Wilce
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Rodney J. Devenish
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Andrew Bradbury
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Mark Prescott
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|