1
|
Reyes Romero A, Lunev S, Popowicz GM, Calderone V, Gentili M, Sattler M, Plewka J, Taube M, Kozak M, Holak TA, Dömling ASS, Groves MR. A fragment-based approach identifies an allosteric pocket that impacts malate dehydrogenase activity. Commun Biol 2021; 4:949. [PMID: 34376783 PMCID: PMC8355244 DOI: 10.1038/s42003-021-02442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/09/2021] [Indexed: 11/14/2022] Open
Abstract
Malate dehydrogenases (MDHs) sustain tumor growth and carbon metabolism by pathogens including Plasmodium falciparum. However, clinical success of MDH inhibitors is absent, as current small molecule approaches targeting the active site are unselective. The presence of an allosteric binding site at oligomeric interface allows the development of more specific inhibitors. To this end we performed a differential NMR-based screening of 1500 fragments to identify fragments that bind at the oligomeric interface. Subsequent biophysical and biochemical experiments of an identified fragment indicate an allosteric mechanism of 4-(3,4-difluorophenyl) thiazol-2-amine (4DT) inhibition by impacting the formation of the active site loop, located >30 Å from the 4DT binding site. Further characterization of the more tractable homolog 4-phenylthiazol-2-amine (4PA) and 16 other derivatives are also reported. These data pave the way for downstream development of more selective molecules by utilizing the oligomeric interfaces showing higher species sequence divergence than the MDH active site. Romero et al. perform NMR-based screening of 1500 fragments to identify fragments that bind at the oligomeric interface of malate dehydrogenase (MDH). Their study indicates an allosteric mechanism impacting enzymatic activity, paving the way for development of more selective molecules and a starting point for the future development of specific MDH inhibitors.
Collapse
Affiliation(s)
- Atilio Reyes Romero
- Drug Design, University of Groningen, Department of Pharmacy, Groningen, The Netherlands
| | - Serjey Lunev
- EV Biotech, Zernikelaan 8, Groningen, the Netherlands
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Vito Calderone
- CERM and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| | | | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Jacek Plewka
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Michał Taube
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland.,National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Kraków, Poland
| | - Tad A Holak
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Alexander S S Dömling
- Drug Design, University of Groningen, Department of Pharmacy, Groningen, The Netherlands
| | - Matthew R Groves
- Drug Design, University of Groningen, Department of Pharmacy, Groningen, The Netherlands.
| |
Collapse
|
2
|
Molecular characterization and functional analysis of Eimeria tenella malate dehydrogenase. Parasitol Res 2018; 117:2053-2063. [PMID: 29740696 DOI: 10.1007/s00436-018-5875-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
Abstract
Eimeria tenella is a serious intracellular parasite that actively invades cecal epithelial cells of chickens. The widespread use of drugs causes severe resistance to Eimeria tenella. We detected that malate dehydrogenase (MDH), one of the differentially expressed genes, was upregulated in diclazuril-resistant and maduramicin-resistant strains through transcriptome sequencing. In this study, we cloned and expressed MDH of E. tenella (EtMDH). Quantitative real-time polymerase chain reactions (qPCR) and Western blots were used to analyze the expression of EtMDH in resistant and sensitive strains, indicating EtMDH was upregulated in two resistant strains at the messenger RNA and protein levels. Enzyme activity was tested through absorbance measurement and the EtMDH activity increased in two resistant strains. Expression levels of EtMDH in four developmental stages of E. tenella were tested through qPCR and Western blot. Invasion inhibition assays explored if EtMDH was involved in invasion of DF-1 cells by E. tenella sporozoites. Indirect immunofluorescence assays investigated EtMDH distribution during parasite development in DF-1 cells invaded by E. tenella sporozoites. Experimental results showed that EtMDH may be related to drug resistance of E. tenella during its development and invasion. EtMDH may be an effective molecular marker for detection of E. tenella drug resistance.
Collapse
|
3
|
Lunev S, Butzloff S, Romero AR, Linzke M, Batista FA, Meissner KA, Müller IB, Adawy A, Wrenger C, Groves MR. Oligomeric interfaces as a tool in drug discovery: Specific interference with activity of malate dehydrogenase of Plasmodium falciparum in vitro. PLoS One 2018; 13:e0195011. [PMID: 29694407 PMCID: PMC5919072 DOI: 10.1371/journal.pone.0195011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/28/2018] [Indexed: 01/29/2023] Open
Abstract
Malaria remains a major threat to human health, as strains resistant to current therapeutics are discovered. Efforts in finding new drug targets are hampered by the lack of sufficiently specific tools to provide target validation prior to initiating expensive drug discovery projects. Thus, new approaches that can rapidly enable drug target validation are of significant interest. In this manuscript we present the crystal structure of malate dehydrogenase from Plasmodium falciparum (PfMDH) at 2.4 Å resolution and structure-based mutagenic experiments interfering with the inter-oligomeric interactions of the enzyme. We report decreased thermal stability, significantly decreased specific activity and kinetic parameters of PfMDH mutants upon mutagenic disruption of either oligomeric interface. In contrast, stabilization of one of the interfaces resulted in increased thermal stability, increased substrate/cofactor affinity and hyperactivity of the enzyme towards malate production at sub-millimolar substrate concentrations. Furthermore, the presented data show that our designed PfMDH mutant could be used as specific inhibitor of the wild type PfMDH activity, as mutated PfMDH copies were shown to be able to self-incorporate into the native assembly upon introduction in vitro, yielding deactivated mutant:wild-type species. These data provide an insight into the role of oligomeric assembly in regulation of PfMDH activity and reveal that recombinant mutants could be used as probe tool for specific modification of the wild type PfMDH activity, thus offering the potential to validate its druggability in vivo without recourse to complex genetics or initial tool compounds. Such tool compounds often lack specificity between host or pathogen proteins (or are toxic in in vivo trials) and result in difficulties in assessing cause and effect-particularly in cases when the enzymes of interest possess close homologs within the human host. Furthermore, our oligomeric interference approach could be used in the future in order to assess druggability of other challenging human pathogen drug targets.
Collapse
Affiliation(s)
- Sergey Lunev
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Sabine Butzloff
- LG Müller, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Atilio R. Romero
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Marleen Linzke
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Saõ Paulo, Brazil
| | - Fernando A. Batista
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Kamila A. Meissner
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Saõ Paulo, Brazil
| | - Ingrid B. Müller
- LG Müller, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Alaa Adawy
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Saõ Paulo, Brazil
- * E-mail: (MRG); (CW)
| | - Matthew R. Groves
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
- * E-mail: (MRG); (CW)
| |
Collapse
|