1
|
Sowerby K, Freitag-Pohl S, Murillo AM, Silber AM, Pohl E. Cysteine synthase: multiple structures of a key enzyme in cysteine synthesis and a potential drug target for Chagas disease and leishmaniasis. Acta Crystallogr D Struct Biol 2023; 79:518-530. [PMID: 37204818 PMCID: PMC10233618 DOI: 10.1107/s2059798323003613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/20/2023] [Indexed: 05/20/2023] Open
Abstract
Chagas disease is a neglected tropical disease (NTD) caused by Trypanosoma cruzi, whilst leishmaniasis, which is caused by over 20 species of Leishmania, represents a group of NTDs endemic to most countries in the tropical and subtropical belt of the planet. These diseases remain a significant health problem both in endemic countries and globally. These parasites and other trypanosomatids, including T. theileri, a bovine pathogen, rely on cysteine biosynthesis for the production of trypanothione, which is essential for parasite survival in hosts. The de novo pathway of cysteine biosynthesis requires the conversion of O-acetyl-L-serine into L-cysteine, which is catalysed by cysteine synthase (CS). These enzymes present potential for drug development against T. cruzi, Leishmania spp. and T. theileri. To enable these possibilities, biochemical and crystallographic studies of CS from T. cruzi (TcCS), L. infantum (LiCS) and T. theileri (TthCS) were conducted. Crystal structures of the three enzymes were determined at resolutions of 1.80 Å for TcCS, 1.75 Å for LiCS and 2.75 Å for TthCS. These three homodimeric structures show the same overall fold and demonstrate that the active-site geometry is conserved, supporting a common reaction mechanism. Detailed structural analysis revealed reaction intermediates of the de novo pathway ranging from an apo structure of LiCS and holo structures of both TcCS and TthCS to the substrate-bound structure of TcCS. These structures will allow exploration of the active site for the design of novel inhibitors. Additionally, unexpected binding sites discovered at the dimer interface represent new potential for the development of protein-protein inhibitors.
Collapse
Affiliation(s)
- Kate Sowerby
- Department of Chemistry, Durham University, Durham, United Kingdom
| | | | | | | | - Ehmke Pohl
- Department of Chemistry, Durham University, Durham, United Kingdom
| |
Collapse
|
2
|
Pardo-Rodriguez D, Cifuentes-López A, Bravo-Espejo J, Romero I, Robles J, Cuervo C, Mejía SM, Tellez J. Lupeol Acetate and α-Amyrin Terpenes Activity against Trypanosoma cruzi: Insights into Toxicity and Potential Mechanisms of Action. Trop Med Infect Dis 2023; 8:tropicalmed8050263. [PMID: 37235311 DOI: 10.3390/tropicalmed8050263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Chagas disease is a potentially fatal disease caused by the parasite Trypanosoma cruzi. There is growing scientific interest in finding new and better therapeutic alternatives for this disease's treatment. METHODS A total of 81 terpene compounds with potential trypanocidal activity were screened and found to have potential T. cruzi cysteine synthase (TcCS) inhibition using molecular docking, molecular dynamics, ADME and PAIN property analyses and in vitro susceptibility assays. RESULTS Molecular docking analyses revealed energy ranges from -10.5 to -4.9 kcal/mol in the 81 tested compounds, where pentacyclic triterpenes were the best. Six compounds were selected to assess the stability of the TcCS-ligand complexes, of which lupeol acetate (ACLUPE) and α-amyrin (AMIR) exhibited the highest stability during 200 ns of molecular dynamics analysis. Such stability was primarily due to their hydrophobic interactions with the amino acids located in the enzyme's active site. In addition, ACLUPE and AMIR exhibited lipophilic characteristics, low intestinal absorption and no structural interferences or toxicity. Finally, selective index for ACLUPE was >5.94, with moderate potency in the trypomastigote stage (EC50 = 15.82 ± 3.7 μg/mL). AMIR's selective index was >9.36 and it was moderately potent in the amastigote stage (IC50 = 9.08 ± 23.85 μg/mL). CONCLUSIONS The present study proposes a rational approach for exploring lupeol acetate and α-amyrin terpene compounds to design new drugs candidates for Chagas disease.
Collapse
Affiliation(s)
- Daniel Pardo-Rodriguez
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Grupo de Productos Naturales, Universidad del Tolima, Tolima 730006299, Colombia
| | | | - Juan Bravo-Espejo
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Ibeth Romero
- Escuela de Pregrados, Dirección Académica, Vicerrectoría de Sede, Universidad Nacional de Colombia, Sede, De La Paz 202010, Colombia
| | - Jorge Robles
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Claudia Cuervo
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Sol M Mejía
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Jair Tellez
- Escuela de Pregrados, Dirección Académica, Vicerrectoría de Sede, Universidad Nacional de Colombia, Sede, De La Paz 202010, Colombia
| |
Collapse
|
3
|
Ali V, Behera S, Nawaz A, Equbal A, Pandey K. Unique thiol metabolism in trypanosomatids: Redox homeostasis and drug resistance. ADVANCES IN PARASITOLOGY 2022; 117:75-155. [PMID: 35878950 DOI: 10.1016/bs.apar.2022.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Trypanosomatids are mainly responsible for heterogeneous parasitic diseases: Leishmaniasis, Sleeping sickness, and Chagas disease and control of these diseases implicates serious challenges due to the emergence of drug resistance. Redox-active biomolecules are the endogenous substances in organisms, which play important role in the regulation of redox homeostasis. The redox-active substances like glutathione, trypanothione, cysteine, cysteine persulfides, etc., and other inorganic intermediates (hydrogen peroxide, nitric oxide) are very useful as defence mechanism. In the present review, the suitability of trypanothione and other essential thiol molecules of trypanosomatids as drug targets are described in Leishmania and Trypanosoma. We have explored the role of tryparedoxin, tryparedoxin peroxidase, ascorbate peroxidase, superoxide dismutase, and glutaredoxins in the anti-oxidant mechanism and drug resistance. Up-regulation of some proteins in trypanothione metabolism helps the parasites in survival against drug pressure (sodium stibogluconate, Amphotericin B, etc.) and oxidative stress. These molecules accept electrons from the reduced trypanothione and donate their electrons to other proteins, and these proteins reduce toxic molecules, neutralize reactive oxygen, or nitrogen species; and help parasites to cope with oxidative stress. Thus, a better understanding of the role of these molecules in drug resistance and redox homeostasis will help to target metabolic pathway proteins to combat Leishmaniasis and trypanosomiases.
Collapse
Affiliation(s)
- Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India.
| | - Sachidananda Behera
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| | - Afreen Nawaz
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| | - Asif Equbal
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India; Department of Botany, Araria College, Purnea University, Purnia, Bihar, India
| | - Krishna Pandey
- Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| |
Collapse
|
4
|
Téllez J, Amarillo A, Suarez C, Cardozo C, Guerra D, Ochoa R, Muskus C, Romero I. Prediction of potential cysteine synthase inhibitors of Leishmania braziliensis and Leishmania major parasites by computational screening. Acta Trop 2022; 225:106182. [PMID: 34627756 DOI: 10.1016/j.actatropica.2021.106182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 01/09/2023]
Abstract
Leishmaniasis is a neglected tropical disease considered a public health problem that requires innovative strategies for its chemotherapeutic control. In the present investigation, a molecular docking approach was carried out using the protein cysteine synthase (CS) of Leishmania braziliensis (CSLb) and Leishmania major (CSLm) parasites to identify new compounds as potential candidates for the development of selective leishmaniasis therapy. CS protein sequence similarity, active site, structural modeling, molecular docking, and ADMET properties of compounds were analyzed using bioinformatics tools. Molecular docking analyses identified 1000 ligands with highly promising binding affinity scores for both CS proteins. A total of 182 compounds for CSLb and 173 for CSLm were selected for more detailed characterization based on the binding energy and frequency values and ADMET properties. Based on Principal Component Analysis (PCA) and K-means clusterization for both CS proteins, we classified compounds into 5 clusters for CSLb and 7 for CSLm, thus providing an excellent starting point for verification of enzyme inhibition in in vitro studies. We found the ZINC16524774 compound predicted to have a high affinity and stability for both CSLb and CSLm proteins, which was also evaluated through molecular dynamics simulations. Compounds within each of the five clusters also displayed pharmacological and structural properties that make them attractive drug candidates for the development of selective cutaneous leishmaniasis chemotherapy.
Collapse
|
5
|
Herrera-Acevedo C, Perdomo-Madrigal C, Muratov EN, Scotti L, Scotti MT. Discovery of Alternative Chemotherapy Options for Leishmaniasis through Computational Studies of Asteraceae. ChemMedChem 2021; 16:1234-1245. [PMID: 33336460 DOI: 10.1002/cmdc.202000862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Indexed: 12/12/2022]
Abstract
Leishmaniasis is a complex disease caused by over 20 Leishmania species that primarily affects populations with poor socioeconomic conditions. Currently available drugs for treating leishmaniasis include amphotericin B, paromomycin, and pentavalent antimonials, which have been associated with several limitations, such as low efficacy, the development of drug resistance, and high toxicity. Natural products are an interesting source of new drug candidates. The Asteraceae family includes more than 23 000 species worldwide. Secondary metabolites that can be found in species from this family have been widely explored as potential new treatments for leishmaniasis. Recently, computational tools have become more popular in medicinal chemistry to establish experimental designs, identify new drugs, and compare the molecular structures and activities of novel compounds. Herein, we review various studies that have used computational tools to examine various compounds identified in the Asteraceae family in the search for potential drug candidates against Leishmania.
Collapse
Affiliation(s)
- Chonny Herrera-Acevedo
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| | - Camilo Perdomo-Madrigal
- School of Science, Universidad de Ciencias Aplicadas y Ambientales, Calle 222 n° 55-37, Bogotá D.C., Colombia
| | - Eugene N Muratov
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| |
Collapse
|
6
|
Lv H, Xu J, Bo T, Wang W. Characterization of Cystathionine β-Synthase TtCbs1 and Cysteine Synthase TtCsa1 Involved in Cysteine Biosynthesis in Tetrahymena thermophila. J Eukaryot Microbiol 2020; 68:e12834. [PMID: 33190347 DOI: 10.1111/jeu.12834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/21/2020] [Accepted: 11/07/2020] [Indexed: 12/19/2022]
Abstract
Cysteine is implicated in important biological processes. It is synthesized through two different pathways. Cystathionine β-synthase and cystathionine γ-lyase participate in the reverse transsulfuration pathway, while serine acetyltransferase and cysteine synthase function in the de novo pathway. Two evolutionarily related pyridoxal 5'-phosphate-dependent enzymes, cystathionine β-synthase TtCBS1 (TTHERM_00558300) and cysteine synthase TtCSA1 (TTHERM_00239430), were identified from a freshwater protozoan Tetrahymena thermophila. TtCbs1 contained the N-terminal heme binding domain, catalytic domain, and C-terminal regulatory domain, whereas TtCsa1 consisted of two α/β domains. The catalytic core of the two enzymes is similar. TtCBS1 and TtCSA1 showed high expression levels in the vegetative growth stage and decreased during the sexual developmental stage. TtCbs1 and TtCsa1 were localized in the cytoplasm throughout different developmental stages. His-TtCbs1 and His-TtCsa1 were expressed and purified in vitro. TtCbs1 catalyzed the canonical reaction with the highest velocity and possessed serine sulfhydrylase activity. TtCsa1 showed cysteine synthase activity with high Km for O-acetylserine and low Km for sulfide and also had serine sulfhydrylase activity toward serine. Both TtCbs1 and TtCsa1 catalyzed hydrogen sulfide producing. TtCBS1 knockdown and TtCSA1 knockout mutants affected cysteine and glutathione synthesis. TtCbs1 and TtCsa1 are involved in cysteine synthesis through two different pathways in T. thermophila.
Collapse
Affiliation(s)
- Hongrui Lv
- School of Life Science, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Jing Xu
- School of Life Science, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
7
|
Scotti MT, Monteiro AFM, de Oliveira Viana J, Bezerra Mendonça Junior FJ, Ishiki HM, Tchouboun EN, De Araújo RSA, Scotti L. Recent Theoretical Studies Concerning Important Tropical Infections. Curr Med Chem 2020; 27:795-834. [DOI: 10.2174/0929867326666190711121418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023]
Abstract
Neglected Tropical Diseases (NTDs) form a group of diseases that are strongly associated
with poverty, flourish in impoverished environments, and thrive best in tropical areas,
where they tend to present overlap. They comprise several diseases, and the symptoms
vary dramatically from disease to disease, often causing from extreme pain, and untold misery
that anchors populations to poverty, permanent disability, and death. They affect more than 1
billion people worldwide; mostly in poor populations living in tropical and subtropical climates.
In this review, several complementary in silico approaches are presented; including
identification of new therapeutic targets, novel mechanisms of activity, high-throughput
screening of small-molecule libraries, as well as in silico quantitative structure-activity relationship
and recent molecular docking studies. Current and active research against Sleeping
Sickness, American trypanosomiasis, Leishmaniasis and Schistosomiasis infections will hopefully
lead to safer, more effective, less costly and more widely available treatments against
these parasitic forms of Neglected Tropical Diseases (NTDs) in the near future.
Collapse
Affiliation(s)
- Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Alex France Messias Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Jéssika de Oliveira Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | | | - Hamilton M. Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | | | - Rodrigo Santos A. De Araújo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| |
Collapse
|
8
|
Magalhães J, Franko N, Annunziato G, Welch M, Dolan SK, Bruno A, Mozzarelli A, Armao S, Jirgensons A, Pieroni M, Costantino G, Campanini B. Discovery of novel fragments inhibiting O-acetylserine sulphhydrylase by combining scaffold hopping and ligand-based drug design. J Enzyme Inhib Med Chem 2018; 33:1444-1452. [PMID: 30221554 PMCID: PMC6147075 DOI: 10.1080/14756366.2018.1512596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Several bacteria rely on the reductive sulphur assimilation pathway, absent in mammals, to synthesise cysteine. Reduction of virulence and decrease in antibiotic resistance have already been associated with mutations on the genes that codify cysteine biosynthetic enzymes. Therefore, inhibition of cysteine biosynthesis has emerged as a promising strategy to find new potential agents for the treatment of bacterial infection. Following our previous efforts to explore OASS inhibition and to expand and diversify our library, a scaffold hopping approach was carried out, with the aim of identifying a novel fragment for further development. This novel chemical tool, endowed with favourable pharmacological characteristics, was successfully developed, and a preliminary Structure–Activity Relationship investigation was carried out.
Collapse
Affiliation(s)
- Joana Magalhães
- a P4T group, Department of Food and Drug , University of Parma , Parma , Italy
| | - Nina Franko
- b Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug , University of Parma , Parma , Italy
| | | | - Martin Welch
- c Department of Biochemistry , Cambridge University , Cambridge , United Kingdom
| | - Stephen K Dolan
- c Department of Biochemistry , Cambridge University , Cambridge , United Kingdom
| | - Agostino Bruno
- d Experimental Therapeutics Program , IFOM - The FIRC Institute for Molecular Oncology Foundation , Milano , Italy
| | - Andrea Mozzarelli
- b Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug , University of Parma , Parma , Italy.,e National Institute of Biostructures and Biosystems , Rome , Italy.,f Institute of Biophysics, CNR , Pisa , Italy
| | - Stefano Armao
- g Centro Interdipartimentale "Biopharmanet-tec", Università degli Studi di Parma , Parma , Italy
| | | | - Marco Pieroni
- a P4T group, Department of Food and Drug , University of Parma , Parma , Italy
| | - Gabriele Costantino
- a P4T group, Department of Food and Drug , University of Parma , Parma , Italy.,i Centro Interdipartimentale Misure (CIM)'G. Casnati', University of Parma , Parma , Italy
| | - Barbara Campanini
- b Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug , University of Parma , Parma , Italy
| |
Collapse
|
9
|
Westrop GD, Wang L, Blackburn GJ, Zhang T, Zheng L, Watson DG, Coombs GH. Metabolomic profiling and stable isotope labelling of Trichomonas vaginalis and Tritrichomonas foetus reveal major differences in amino acid metabolism including the production of 2-hydroxyisocaproic acid, cystathionine and S-methylcysteine. PLoS One 2017; 12:e0189072. [PMID: 29267346 PMCID: PMC5739422 DOI: 10.1371/journal.pone.0189072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/17/2017] [Indexed: 11/19/2022] Open
Abstract
Trichomonas vaginalis and Tritrichomonas foetus are pathogens that parasitise, respectively, human and bovine urogenital tracts causing disease. Using LC-MS, reference metabolomic profiles were obtained for both species and stable isotope labelling with D-[U-13C6] glucose was used to analyse central carbon metabolism. This facilitated a comparison of the metabolic pathways of T. vaginalis and T. foetus, extending earlier targeted biochemical studies. 43 metabolites, whose identities were confirmed by comparison of their retention times with authentic standards, occurred at more than 3-fold difference in peak intensity between T. vaginalis and T. foetus. 18 metabolites that were removed from or released into the medium during growth also showed more than 3-fold difference between the species. Major differences were observed in cysteine and methionine metabolism in which homocysteine, produced as a bi-product of trans-methylation, is catabolised by methionine γ-lyase in T. vaginalis but converted to cystathionine in T. foetus. Both species synthesise methylthioadenosine by an unusual mechanism, but it is not used as a substrate for methionine recycling. T. vaginalis also produces and exports high levels of S-methylcysteine, whereas only negligible levels were found in T. foetus which maintains significantly higher intracellular levels of cysteine. 13C-labeling confirmed that both cysteine and S-methylcysteine are synthesised by T. vaginalis; S-methylcysteine can be generated by recombinant T. vaginalis cysteine synthase using phosphoserine and methanethiol. T. foetus contained higher levels of ornithine and citrulline than T. vaginalis and exported increased levels of putrescine, suggesting greater flux through the arginine dihydrolase pathway. T. vaginalis produced and exported hydroxy acid derivatives of certain amino acids, particularly 2-hydroxyisocaproic acid derived from leucine, whereas negligible levels of these metabolites occurred in T. foetus.
Collapse
Affiliation(s)
- Gareth D. Westrop
- Strathclyde Institute of Pharmacy and Biomedical Science, Strathclyde University, Glasgow, United Kingdom
- * E-mail:
| | - Lijie Wang
- Strathclyde Institute of Pharmacy and Biomedical Science, Strathclyde University, Glasgow, United Kingdom
| | | | - Tong Zhang
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Liang Zheng
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, Shanghai, China
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Science, Strathclyde University, Glasgow, United Kingdom
| | - Graham H. Coombs
- Strathclyde Institute of Pharmacy and Biomedical Science, Strathclyde University, Glasgow, United Kingdom
| |
Collapse
|
10
|
Ogungbe IV, Setzer WN. The Potential of Secondary Metabolites from Plants as Drugs or Leads against Protozoan Neglected Diseases-Part III: In-Silico Molecular Docking Investigations. Molecules 2016; 21:E1389. [PMID: 27775577 PMCID: PMC6274513 DOI: 10.3390/molecules21101389] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
Malaria, leishmaniasis, Chagas disease, and human African trypanosomiasis continue to cause considerable suffering and death in developing countries. Current treatment options for these parasitic protozoal diseases generally have severe side effects, may be ineffective or unavailable, and resistance is emerging. There is a constant need to discover new chemotherapeutic agents for these parasitic infections, and natural products continue to serve as a potential source. This review presents molecular docking studies of potential phytochemicals that target key protein targets in Leishmania spp., Trypanosoma spp., and Plasmodium spp.
Collapse
Affiliation(s)
- Ifedayo Victor Ogungbe
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
11
|
Pieroni M, Annunziato G, Beato C, Wouters R, Benoni R, Campanini B, Pertinhez TA, Bettati S, Mozzarelli A, Costantino G. Rational Design, Synthesis, and Preliminary Structure–Activity Relationships of α-Substituted-2-Phenylcyclopropane Carboxylic Acids as Inhibitors of Salmonella typhimurium O-Acetylserine Sulfhydrylase. J Med Chem 2016; 59:2567-78. [DOI: 10.1021/acs.jmedchem.5b01775] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Stefano Bettati
- Department
of Neurosciences, University of Parma, Via Volturno, 39, 43125 Parma, Italy
- National Institute of Biostructures and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
| | - Andrea Mozzarelli
- National Institute of Biostructures and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
- Institute of Biophysics, CNR, /o
Area di Ricerca San Cataldo, Via G. Moruzzi N° 1, 56124 Pisa, Italy
| | | |
Collapse
|
12
|
Upregulation of Cysteine Synthase and Cystathionine β-Synthase Contributes to Leishmania braziliensis Survival under Oxidative Stress. Antimicrob Agents Chemother 2015; 59:4770-81. [PMID: 26033728 DOI: 10.1128/aac.04880-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/14/2015] [Indexed: 12/19/2022] Open
Abstract
Cysteine metabolism is considered essential for the crucial maintenance of a reducing environment in trypanosomatids due to its importance as a precursor of trypanothione biosynthesis. Expression, activity, functional rescue, and overexpression of cysteine synthase (CS) and cystathionine β-synthase (CβS) were evaluated in Leishmania braziliensis promastigotes and intracellular amastigotes under in vitro stress conditions induced by hydrogen peroxide (H2O2), S-nitroso-N-acetylpenicillamine, or antimonial compounds. Our results demonstrate a stage-specific increase in the levels of protein expression and activity of L. braziliensis CS (LbrCS) and L. braziliensis CβS (LbrCβS), resulting in an increment of total thiol levels in response to both oxidative and nitrosative stress. The rescue of the CS activity in Trypanosoma rangeli, a trypanosome that does not perform cysteine biosynthesis de novo, resulted in increased rates of survival of epimastigotes expressing the LbrCS under stress conditions compared to those of wild-type parasites. We also found that the ability of L. braziliensis promastigotes and amastigotes overexpressing LbrCS and LbrCβS to resist oxidative stress was significantly enhanced compared to that of nontransfected cells, resulting in a phenotype far more resistant to treatment with the pentavalent form of Sb in vitro. In conclusion, the upregulation of protein expression and increment of the levels of LbrCS and LbrCβS activity alter parasite resistance to antimonials and may influence the efficacy of antimony treatment of New World leishmaniasis.
Collapse
|
13
|
Nagle A, Khare S, Kumar AB, Supek F, Buchynskyy A, Mathison CJN, Chennamaneni N, Pendem N, Buckner FS, Gelb M, Molteni V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem Rev 2014; 114:11305-47. [PMID: 25365529 PMCID: PMC4633805 DOI: 10.1021/cr500365f] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Indexed: 02/08/2023]
Affiliation(s)
- Advait
S. Nagle
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shilpi Khare
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Arun Babu Kumar
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frantisek Supek
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Andriy Buchynskyy
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Casey J. N. Mathison
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Naveen
Kumar Chennamaneni
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Nagendar Pendem
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frederick S. Buckner
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Michael
H. Gelb
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Valentina Molteni
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
14
|
Bernal FA, Coy-Barrera E. In-silico analyses of sesquiterpene-related compounds on selected Leishmania enzyme-based targets. Molecules 2014; 19:5550-69. [PMID: 24786692 PMCID: PMC6271876 DOI: 10.3390/molecules19055550] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/14/2014] [Accepted: 04/22/2014] [Indexed: 01/22/2023] Open
Abstract
A great number of sesquiterpenes are reported in the available literature as good antileishmanial leads. However, their mode of action at the molecular level has not been elucidated. The lack of molecular studies could be considered an impediment for studies seeking to improve sesquiterpene-based drug design. The present in silico study allows us to make important observations about the molecular details of the binding modes of a set of antileishmanial sesquiterpenes against four drug-enzyme targets [pteridine reductase-1 (PTR1), N-myristoyl transferase (NMT), cysteine synthase (CS), trypanothione synthetase (TryS)]. Through molecular docking it was found that two sesquiterpene coumarins are promising leads for the PTR1 and TryS inhibition purposes, and some xanthanolides also exhibited better affinity towards PTR1 and CS binding. In addition, the affinity values were clustered by Principal Component Analysis and drug-like properties were analyzed for the strongest-docking sesquiterpenes. The results are an excellent starting point for future studies of structural optimization of this kind of compounds.
Collapse
Affiliation(s)
- Freddy A Bernal
- Laboratorio de Química Bioorgánica, Departamento de Química, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cundinamarca 250240, AA 49300, Colombia.
| | - Ericsson Coy-Barrera
- Laboratorio de Química Bioorgánica, Departamento de Química, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cundinamarca 250240, AA 49300, Colombia.
| |
Collapse
|
15
|
Spyrakis F, Singh R, Cozzini P, Campanini B, Salsi E, Felici P, Raboni S, Benedetti P, Cruciani G, Kellogg GE, Cook PF, Mozzarelli A. Isozyme-specific ligands for O-acetylserine sulfhydrylase, a novel antibiotic target. PLoS One 2013; 8:e77558. [PMID: 24167577 PMCID: PMC3805590 DOI: 10.1371/journal.pone.0077558] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 09/03/2013] [Indexed: 01/06/2023] Open
Abstract
The last step of cysteine biosynthesis in bacteria and plants is catalyzed by O-acetylserine sulfhydrylase. In bacteria, two isozymes, O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, have been identified that share similar binding sites, although the respective specific functions are still debated. O-acetylserine sulfhydrylase plays a key role in the adaptation of bacteria to the host environment, in the defense mechanisms to oxidative stress and in antibiotic resistance. Because mammals synthesize cysteine from methionine and lack O-acetylserine sulfhydrylase, the enzyme is a potential target for antimicrobials. With this aim, we first identified potential inhibitors of the two isozymes via a ligand- and structure-based in silico screening of a subset of the ZINC library using FLAP. The binding affinities of the most promising candidates were measured in vitro on purified O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B from Salmonella typhimurium by a direct method that exploits the change in the cofactor fluorescence. Two molecules were identified with dissociation constants of 3.7 and 33 µM for O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, respectively. Because GRID analysis of the two isoenzymes indicates the presence of a few common pharmacophoric features, cross binding titrations were carried out. It was found that the best binder for O-acetylserine sulfhydrylase-B exhibits a dissociation constant of 29 µM for O-acetylserine sulfhydrylase-A, thus displaying a limited selectivity, whereas the best binder for O-acetylserine sulfhydrylase-A exhibits a dissociation constant of 50 µM for O-acetylserine sulfhydrylase-B and is thus 8-fold selective towards the former isozyme. Therefore, isoform-specific and isoform-independent ligands allow to either selectively target the isozyme that predominantly supports bacteria during infection and long-term survival or to completely block bacterial cysteine biosynthesis.
Collapse
Affiliation(s)
| | - Ratna Singh
- Department of Pharmacy, University of Parma, Parma, Italy
| | - Pietro Cozzini
- Department of Food Sciences, University of Parma, Parma, Italy
- National Institute of Biostructures and Biosystems, Rome, Italy
| | - Barbara Campanini
- Department of Pharmacy, University of Parma, Parma, Italy
- * E-mail: (BC); (AM)
| | - Enea Salsi
- Department of Pharmacy, University of Parma, Parma, Italy
| | - Paolo Felici
- Department of Pharmacy, University of Parma, Parma, Italy
| | - Samanta Raboni
- Department of Pharmacy, University of Parma, Parma, Italy
| | | | | | - Glen E. Kellogg
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Paul F. Cook
- Department of Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Andrea Mozzarelli
- Department of Pharmacy, University of Parma, Parma, Italy
- National Institute of Biostructures and Biosystems, Rome, Italy
- * E-mail: (BC); (AM)
| |
Collapse
|
16
|
The cysteine regulatory complex from plants and microbes: what was old is new again. Curr Opin Struct Biol 2013; 23:302-10. [DOI: 10.1016/j.sbi.2013.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/16/2013] [Accepted: 02/26/2013] [Indexed: 11/20/2022]
|
17
|
Spyrakis F, Felici P, Bayden AS, Salsi E, Miggiano R, Kellogg GE, Cozzini P, Cook PF, Mozzarelli A, Campanini B. Fine tuning of the active site modulates specificity in the interaction of O-acetylserine sulfhydrylase isozymes with serine acetyltransferase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:169-81. [DOI: 10.1016/j.bbapap.2012.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
|