1
|
Gerbracht JV, Harding T, Simpson AGB, Roger AJ, Hess S. Comparative transcriptomics reveals the molecular toolkit used by an algivorous protist for cell wall perforation. Curr Biol 2022; 32:3374-3384.e5. [PMID: 35700733 DOI: 10.1016/j.cub.2022.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/11/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Microbial eukaryotes display a stunning diversity of feeding strategies, ranging from generalist predators to highly specialized parasites. The unicellular "protoplast feeders" represent a fascinating mechanistic intermediate, as they penetrate other eukaryotic cells (algae and fungi) like some parasites but then devour their cell contents by phagocytosis.1 Besides prey recognition and attachment, this complex behavior involves the local, pre-phagocytotic dissolution of the prey cell wall, which results in well-defined perforations of species-specific size and structure.2 Yet the molecular processes that enable protoplast feeders to overcome cell walls of diverse biochemical composition remain unknown. We used the flagellate Orciraptor agilis (Viridiraptoridae, Rhizaria) as a model protoplast feeder and applied differential gene expression analysis to examine its penetration of green algal cell walls. Besides distinct expression changes that reflect major cellular processes (e.g., locomotion and cell division), we found lytic carbohydrate-active enzymes that are highly expressed and upregulated during the attack on the alga. A putative endocellulase (family GH5_5) with a secretion signal is most prominent, and a potential key factor for cell wall dissolution. Other candidate enzymes (e.g., lytic polysaccharide monooxygenases) belong to families that are largely uncharacterized, emphasizing the potential of non-fungal microeukaryotes for enzyme exploration. Unexpectedly, we discovered various chitin-related factors that point to an unknown chitin metabolism in Orciraptor agilis, potentially also involved in the feeding process. Our findings provide first molecular insights into an important microbial feeding behavior and new directions for cell biology research on non-model eukaryotes.
Collapse
Affiliation(s)
- Jennifer V Gerbracht
- Institute for Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Tommy Harding
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - Alastair G B Simpson
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - Sebastian Hess
- Institute for Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany; Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
2
|
Yuan Y, Chen C, Wang X, Shen S, Guo X, Chen X, Yang F, Li X. A novel accessory protein ArCel5 from cellulose-gelatinizing fungus Arthrobotrys sp. CX1. BIORESOUR BIOPROCESS 2022; 9:27. [PMID: 38647580 PMCID: PMC10991334 DOI: 10.1186/s40643-022-00519-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/06/2022] [Indexed: 11/10/2022] Open
Abstract
Improved understanding of cellulose swelling mechanism is beneficial for increasing the hydrolysis efficiency of cellulosic substrates. Here, we report a family 5 glycoside hydrolase ArCel5 isolated from the cellulose-gelatinizing fungus Arthrobotrys sp. CX1. ArCel5 exhibited low specific hydrolysis activity and high cellulose swelling capability, which suggested that this protein might function as an accessory protein. Homology modeling glycosylation detection revealed that ArCel5 is a multi-domain protein including a family 1 carbohydrate-binding module, a glycosylation linker, and a catalytic domain. The adsorption capacity, structural changes and hydrature index of filter paper treated by different ArCel5 mutants demonstrated that CBM1 and linker played an essential role in recognizing, binding and decrystallizing cellulosic substrates, which further encouraged the synergistic action between ArCel5 and cellulases. Notably, glycosylation modification further strengthened the function of the linker region. Overall, our study provides insight into the cellulose decrystallization mechanism by a novel accessory protein ArCel5 that will benefit future applications.
Collapse
Affiliation(s)
- Yue Yuan
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China
| | - Chunshu Chen
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China
| | - Xueyan Wang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China
| | - Shaonian Shen
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China
| | - Xiaoyu Guo
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China
| | - Xiaoyi Chen
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China
| | - Fan Yang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China.
| | - Xianzhen Li
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China.
| |
Collapse
|
3
|
Collet L, Vander Wauven C, Oudjama Y, Galleni M, Dutoit R. Highlighting the factors governing transglycosylation in the GH5_5 endo-1,4-β-glucanase RBcel1. Acta Crystallogr D Struct Biol 2022; 78:278-289. [PMID: 35234142 PMCID: PMC8900817 DOI: 10.1107/s2059798321013541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022] Open
Abstract
Transglycosylating glycoside hydrolases (GHs) offer great potential for the enzymatic synthesis of oligosaccharides. Although knowledge is progressing, there is no unique strategy to improve the transglycosylation yield. Obtaining efficient enzymatic tools for glycan synthesis with GHs remains dependent on an improved understanding of the molecular factors governing the balance between hydrolysis and transglycosylation. This enzymatic and structural study of RBcel1, a transglycosylase from the GH5_5 subfamily isolated from an uncultured bacterium, aims to unravel such factors. The size of the acceptor and donor sugars was found to be critical since transglycosylation is efficient with oligosaccharides at least the size of cellotetraose as the donor and cellotriose as the acceptor. The reaction pH is important in driving the balance between hydrolysis and transglycosylation: hydrolysis is favored at pH values below 8, while transglycosylation becomes the major reaction at basic pH. Solving the structures of two RBcel1 variants, RBcel1_E135Q and RBcel1_Y201F, in complex with ligands has brought to light some of the molecular factors behind transglycosylation. The structure of RBcel1_E135Q in complex with cellotriose allowed a +3 subsite to be defined, in accordance with the requirement for cellotriose as a transglycosylation acceptor. The structure of RBcel1_Y201F has been obtained with several transglycosylation intermediates, providing crystallographic evidence of transglycosylation. The catalytic cleft is filled with (i) donors ranging from cellotriose to cellohexaose in the negative subsites and (ii) cellobiose and cellotriose in the positive subsites. Such a structure is particularly relevant since it is the first structure of a GH5 enzyme in complex with transglycosylation products that has been obtained with neither of the catalytic glutamate residues modified.
Collapse
Affiliation(s)
- Laetitia Collet
- LABIRIS, 1 Avenue Emile Gryzon, 1070 Brussels, Belgium
- Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, 13 Allée du 6 Août, 4000 Liège, Belgium
| | | | | | - Moreno Galleni
- Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, 13 Allée du 6 Août, 4000 Liège, Belgium
| | | |
Collapse
|
4
|
Sanjaya RE, Putri KDA, Kurniati A, Rohman A, Puspaningsih NNT. In silico characterization of the GH5-cellulase family from uncultured microorganisms: physicochemical and structural studies. J Genet Eng Biotechnol 2021; 19:143. [PMID: 34591195 PMCID: PMC8484414 DOI: 10.1186/s43141-021-00236-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/29/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hydrolysis of cellulose-based biomass by cellulases produce fermented sugar for making biofuels, such as bioethanol. Cellulases hydrolyze the β-1,4-glycosidic linkage of cellulose and can be obtained from cultured and uncultured microorganisms. Uncultured microorganisms are a source for exploring novel cellulase genes through the metagenomic approach. Metagenomics concerns the extraction, cloning, and analysis of the entire genetic complement of a habitat without cultivating microbes. The glycoside hydrolase 5 family (GH5) is a cellulase family, as the largest group of glycoside hydrolases. Numerous variants of GH5-cellulase family have been identified through the metagenomic approach, including CelGH5 in this study. University-CoE-Research Center for Biomolecule Engineering, Universitas Airlangga successfully isolated CelGH5 from waste decomposition of oil palm empty fruit bunches (OPEFB) soil by metagenomics approach. The properties and structural characteristics of GH5-cellulases from uncultured microorganisms can be studied using computational tools and software. RESULTS The GH5-cellulase family from uncultured microorganisms was characterized using standard computational-based tools. The amino acid sequences and 3D-protein structures were retrieved from the GenBank Database and Protein Data Bank. The physicochemical analysis revealed the sequence length was roughly 332-751 amino acids, with the molecular weight range around 37-83 kDa, dominantly negative charges with pI values below 7. Alanine was the most abundant amino acid making up the GH5-cellulase family and the percentage of hydrophobic amino acids was more than hydrophilic. Interestingly, ten endopeptidases with the highest average number of cleavage sites were found. Another uniqueness demonstrated that there was also a difference in stability between in silico and wet lab. The II values indicated CelGH5 and ACA61162.1 as unstable enzymes, while the wet lab showed they were stable at broad pH range. The program of SOPMA, PDBsum, ProSA, and SAVES provided the secondary and tertiary structure analysis. The predominant secondary structure was the random coil, and tertiary structure has fulfilled the structure quality of QMEAN4, ERRAT, Ramachandran plot, and Z score. CONCLUSION This study can afford the new insights about the physicochemical and structural properties of the GH5-cellulase family from uncultured microorganisms. Furthermore, in silico analysis could be valuable in selecting a highly efficient cellulases for enhanced enzyme production.
Collapse
Affiliation(s)
- Rahmat Eko Sanjaya
- Mathematics and Natural Science Study Program, Faculty of Science and Technology, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia
- University-CoE-Research Centre for Bio-Molecule Engineering, 2nd Floor ITD Building, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia
- Chemistry Education Study Program, Faculty of Teacher Training and Education, Universitas Lambung Mangkurat, Jl. Brigjend. H. Hasan Basry, Banjarmasin, Kalimantan, 70123, Indonesia
| | - Kartika Dwi Asni Putri
- University-CoE-Research Centre for Bio-Molecule Engineering, 2nd Floor ITD Building, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia
| | - Anita Kurniati
- Mathematics and Natural Science Study Program, Faculty of Science and Technology, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia
- University-CoE-Research Centre for Bio-Molecule Engineering, 2nd Floor ITD Building, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia
- Department of Health, Faculty of Vocational Studies, Kampus B Universitas Airlangga, Surabaya, East Java, 60286, Indonesia
| | - Ali Rohman
- University-CoE-Research Centre for Bio-Molecule Engineering, 2nd Floor ITD Building, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia
- Department of Chemistry, Faculty of Science and Technology, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia
| | - Ni Nyoman Tri Puspaningsih
- University-CoE-Research Centre for Bio-Molecule Engineering, 2nd Floor ITD Building, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia.
- Department of Chemistry, Faculty of Science and Technology, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia.
| |
Collapse
|
5
|
Collet L, Vander Wauven C, Oudjama Y, Galleni M, Dutoit R. Glycoside hydrolase family 5: structural snapshots highlighting the involvement of two conserved residues in catalysis. Acta Crystallogr D Struct Biol 2021; 77:205-216. [PMID: 33559609 DOI: 10.1107/s2059798320015557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/24/2020] [Indexed: 11/10/2022] Open
Abstract
The ability of retaining glycoside hydrolases (GHs) to transglycosylate is inherent to the double-displacement mechanism. Studying reaction intermediates, such as the glycosyl-enzyme intermediate (GEI) and the Michaelis complex, could provide valuable information to better understand the molecular factors governing the catalytic mechanism. Here, the GEI structure of RBcel1, an endo-1,4-β-glucanase of the GH5 family endowed with transglycosylase activity, is reported. It is the first structure of a GH5 enzyme covalently bound to a natural oligosaccharide with the two catalytic glutamate residues present. The structure of the variant RBcel1_E135A in complex with cellotriose is also reported, allowing a description of the entire binding cleft of RBcel1. Taken together, the structures deliver different snapshots of the double-displacement mechanism. The structural analysis revealed a significant movement of the nucleophilic glutamate residue during the reaction. Enzymatic assays indicated that, as expected, the acid/base glutamate residue is crucial for the glycosylation step and partly contributes to deglycosylation. Moreover, a conserved tyrosine residue in the -1 subsite, Tyr201, plays a determinant role in both the glycosylation and deglycosylation steps, since the GEI was trapped in the RBcel1_Y201F variant. The approach used to obtain the GEI presented here could easily be transposed to other retaining GHs in clan GH-A.
Collapse
Affiliation(s)
| | | | | | - Moreno Galleni
- Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, 13 Allée du 6 Août, 4000 Liège, Belgium
| | | |
Collapse
|
6
|
Guerrero EB, de Villegas RMD, Soria MA, Santangelo MP, Campos E, Talia PM. Characterization of two GH5 endoglucanases from termite microbiome using synthetic metagenomics. Appl Microbiol Biotechnol 2020; 104:8351-8366. [DOI: 10.1007/s00253-020-10831-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
|
7
|
Dutoit R, Delsaute M, Collet L, Vander Wauven C, Van Elder D, Berlemont R, Richel A, Galleni M, Bauvois C. Crystal structure determination of Pseudomonas stutzeri A1501 endoglucanase Cel5A: the search for a molecular basis for glycosynthesis in GH5_5 enzymes. Acta Crystallogr D Struct Biol 2019; 75:605-615. [PMID: 31205022 DOI: 10.1107/s2059798319007113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/16/2019] [Indexed: 01/23/2023] Open
Abstract
The discovery of new glycoside hydrolases that can be utilized in the chemoenzymatic synthesis of carbohydrates has emerged as a promising approach for various biotechnological processes. In this study, recombinant Ps_Cel5A from Pseudomonas stutzeri A1501, a novel member of the GH5_5 subfamily, was expressed, purified and crystallized. Preliminary experiments confirmed the ability of Ps_Cel5A to catalyze transglycosylation with cellotriose as a substrate. The crystal structure revealed several structural determinants in and around the positive subsites, providing a molecular basis for a better understanding of the mechanisms that promote and favour synthesis rather than hydrolysis. In the positive subsites, two nonconserved positively charged residues (Arg178 and Lys216) were found to interact with cellobiose. This adaptation has also been reported for transglycosylating β-mannanases of the GH5_7 subfamily.
Collapse
Affiliation(s)
| | - Maud Delsaute
- InBioS - Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, 13 Allée du 6 Août, 4000 Liège, Belgium
| | | | | | - Dany Van Elder
- Laboratory of Microbiology, Université Libre de Bruxelles, 12 Rue des Professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Renaud Berlemont
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840-9502, USA
| | - Aurore Richel
- Gembloux Agro-Bio Tech, University of Liège, 2 Passage des Déportés, 5030 Gembloux, Belgium
| | - Moreno Galleni
- InBioS - Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, 13 Allée du 6 Août, 4000 Liège, Belgium
| | | |
Collapse
|
8
|
Zheng F, Huang H, Wang X, Tu T, Liu Q, Meng K, Wang Y, Su X, Xie X, Luo H. Improvement of the catalytic performance of a Bispora antennata cellulase by replacing the N-terminal semi-barrel structure. BIORESOURCE TECHNOLOGY 2016; 218:279-285. [PMID: 27372007 DOI: 10.1016/j.biortech.2016.06.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
The aim of this work was to study the contribution of the N-terminal structure to cellulase catalytic performance. A wild-type cellulase (BaCel5) of glycosyl hydrolase (GH) family 5 from Bispora antennata and two hybrid enzymes (BaCel5(127) and BaCel5(167)) with replacement of the N-terminal (βα)3 (127 residues) or (βα)4 (167 residues)-barrel with the corresponding sequences of TeEgl5A from Talaromyces emersonii were produced in Pichia pastoris and biochemically characterized. BaCel5 exhibited optimal activity at pH 5.0 and 50°C but had low catalytic efficiency (25.4±0.8mLs(-1)mg(-1)). In contrast, BaCel5(127) and BaCel5(167) showed similar enzymatic properties but improved catalytic performance. When using CMC-Na, barley β-glucan, lichenan, and cellooligosaccharides as substrates, BaCel5(127) and BaCel5(167) had increased specific activities and catalytic efficiencies by ∼1.8-6.7-fold and ∼1.0-4.7-fold, respectively. The catalytic efficiency of BaCel5(167) was even higher than that of parental proteins. The underlying mechanism was analyzed by molecular docking and molecular dynamic simulation.
Collapse
Affiliation(s)
- Fei Zheng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China; Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xiaoyu Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China; Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Qiong Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Kun Meng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Yuan Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xiangming Xie
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| |
Collapse
|