1
|
Yao J, Miao Y, Zhu L, Wan M, Lu Y, Tang W. Histidine trinucleotide binding protein 2: from basic science to clinical implications. Biochem Pharmacol 2023; 212:115527. [PMID: 37004779 DOI: 10.1016/j.bcp.2023.115527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Histidine triad nucleotide-binding protein 2 (HINT2) is a dimeric protein that belongs to the histidine triad protein superfamily, predominantly expressed in the liver, pancreas, and adrenal gland, and localised to the mitochondrion. HINT2 binds nucleotides and catalyses the hydrolysis of nucleotidyl substrates. Moreover, HINT2 has been identified as a key regulator of multiple biological processes, including mitochondria-dependent apoptosis, mitochondrial protein acetylation, and steroidogenesis. Genetic manipulation has provided new insights into the physiological roles of HINT2 in several processes, such as inhibition of cancer progression, regulation of hepatic lipid metabolism, and protective effects on the cardiovascular system. The current review outlines the background and functions of HINT2. In addition, it summarises research progress on the correlation between HINT2 and human malignancies, hepatic metabolic diseases, and cardiovascular diseases, with an attempt to provide new research directions emerging in this field and to unveil the therapeutic value of HINT2 as a target in the combat of human diseases.
Collapse
|
2
|
Morais ERDC, de Medeiros NMC, da Silva FL, de Sousa IAL, de Oliveira IGB, Meneses CHSG, Scortecci KC. Redox homeostasis at SAM: a new role of HINT protein. PLANTA 2022; 257:12. [PMID: 36520227 DOI: 10.1007/s00425-022-04044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
ScHINT1 was identified at sugarcane SAM using subtractive libraries. Here, by bioinformatic tools, two-hybrid approach, and biochemical assays, we proposed that its role might be associated to control redox homeostasis. Such control is important for plant development and flowering transition, and this is ensured with some protein partners such as PAL and SBT that interact with ScHINT1. The shoot apical meristem transition from vegetative to reproductive is a crucial step for plants. In sugarcane (Saccharum spp.), this process is not well known, and it has an important impact on production due to field reduction. In view of this, ScHINT1 (Sugarcane HISTIDINE TRIAD NUCLEOTIDE-BINDING PROTEIN) was identified previously by subtractive cDNA libraries using Shoot Apical Meristem (SAM) by our group. This protein is a member of the HIT superfamily that was composed of hydrolase with an AMP site ligation. To better understand the role of ScHINT1 in sugarcane flowering, here its function in SAM was characterized using different approaches such as bioinformatics, two-hybrid assays, transgenic plants, and biochemical assays. ScHINT1 was conserved in plants, and it was grouped into four clades (HINT1, HINT2, HINT3, and HINT4). The 3D model proposed that ScHINT1 might be active as it was able to ligate to AMP subtract. Moreover, the two-hybrid approach identified two protein interactions: subtilase and phenylalanine ammonia-lyase. The evolutionary tree highlighted the relationships that each sequence has with specific subfamilies and different proteins. The 3D models constructed reveal structure conservation when compared with other PDB-related crystals, which indicates probable functional activity for the sugarcane models assessed. The interactome analysis showed a connection to different proteins that have antioxidative functions in apical meristems. Lastly, the transgenic plants with 35S::ScHINT1_AS (anti-sense orientation) produced more flowers than wild-type or 35S::ScHINT1_S (sense). Alpha-tocopherol and antioxidant enzymes measurement showed that their levels were higher in 35S::ScHINT_S plants than in 35S::ScHINT1_AS or wild-type plants. These results proposed that ScHINT1 might have an important role with other proteins in orchestrating this complex network for plant development and flowering.
Collapse
Affiliation(s)
- Emanoelly Roberta de Carvalho Morais
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, Bairro Lagoa Nova, Natal, RN, 59072-970, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, Bairro Lagoa Nova, Natal, RN, 59072-970, Brazil
| | - Nathalia Maira Cabral de Medeiros
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, Bairro Lagoa Nova, Natal, RN, 59072-970, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, Bairro Lagoa Nova, Natal, RN, 59072-970, Brazil
| | - Francinaldo Leite da Silva
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, Bairro Lagoa Nova, Natal, RN, 59072-970, Brazil
| | - Isabel Andrade Lopes de Sousa
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, Bairro Lagoa Nova, Natal, RN, 59072-970, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, Bairro Lagoa Nova, Natal, RN, 59072-970, Brazil
| | - Izamara Gesiele Bezerra de Oliveira
- Departamento de Biologia - Centro de Ciências Biológicas e da Saúde/Programa de Pós-Graduação em Ciências Agrárias, Universidade Estadual da Paraíba, Rua Baraúnas, 351, Bairro Universitário, Campina Grande, PB, 58429-500, Brazil
| | - Carlos Henrique Salvino Gadelha Meneses
- Departamento de Biologia - Centro de Ciências Biológicas e da Saúde/Programa de Pós-Graduação em Ciências Agrárias, Universidade Estadual da Paraíba, Rua Baraúnas, 351, Bairro Universitário, Campina Grande, PB, 58429-500, Brazil
| | - Katia Castanho Scortecci
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, Bairro Lagoa Nova, Natal, RN, 59072-970, Brazil.
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, Bairro Lagoa Nova, Natal, RN, 59072-970, Brazil.
| |
Collapse
|
3
|
Dolot R, Krakowiak A, Kaczmarek R, Włodarczyk A, Pichlak M, Nawrot B. Biochemical, crystallographic and biophysical characterization of histidine triad nucleotide-binding protein 2 with different ligands including a non-hydrolyzable analog of Ap4A. Biochim Biophys Acta Gen Subj 2021; 1865:129968. [PMID: 34329705 DOI: 10.1016/j.bbagen.2021.129968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/02/2021] [Accepted: 07/25/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Human HINT2 is an important mitochondrial enzyme involved in many processes such as apoptosis and bioenergetics, but its endogenous substrates and the three-dimensional structure of the full-length protein have not been identified yet. METHODS An HPLC assay was used to test the hydrolytic activity of HINT2 against various adenosine, guanosine, and 2'-deoxyguanosine derivatives containing phosphate bonds of different types and different leaving groups. Data on binding affinity were obtained by microscale thermophoresis (MST). Crystal structures of HINT2, in its apo form and with a dGMP ligand, were resolved to atomic resolution. RESULTS HINT2 substrate specificity was similar to that of HINT1, but with the major exception of remarkable discrimination against substrates lacking the 2'-hydroxyl group. The biochemical results were consistent with binding affinity measurements. They showed a similar binding strength of AMP and GMP to HINT2, and much weaker binding of dGMP, in contrast to HINT1. A non-hydrolyzable analog of Ap4A (JB419) interacted with both proteins with similar Kd and Ap4A is the signaling molecule that can interact with hHINT1 and regulate the activity of some transcription factors. CONCLUSIONS Several forms of homo- and heterodimers of different lengths of N-terminally truncated polypeptides resulting from degradation of the full-length protein were described. Ser144 in HINT2 appeared to be functionally equivalent to Ser107 in HINT1 by supporting the protonation of the leaving group in the hydrolytic mechanism of HINT2. SIGNIFICANCE Our results should be considered in future studies on the natural function of HINT2 and its role in nucleotide prodrug processing.
Collapse
Affiliation(s)
- Rafał Dolot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Agnieszka Krakowiak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Renata Kaczmarek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Artur Włodarczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Marta Pichlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
4
|
Zhou DK, Qian XH, Cheng J, Chen LH, Wang WL. Clinical significance of down-regulated HINT2 in hepatocellular carcinoma. Medicine (Baltimore) 2019; 98:e17815. [PMID: 31770197 PMCID: PMC6890357 DOI: 10.1097/md.0000000000017815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/19/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
To study the clinical significance of HINT2 expression in patients with HCC.We investigated HINT2 mRNA expression in tumors and adjacent non-tumor hepatic tissues from 106 HCC patients using quantitative real-time PCR. Appropriate statistical methods were then applied to assess the relationships between the HINT2 mRNA level and clinical parameters.HINT2 was significantly down-regulated in HCC (P < .0001). No significant correlation was found between HINT2 expression and clinicopathological factors in HCC patients. A Kaplan-Meier survival curve showed that HINT2 expression is related to recurrence-free survival (P < .05). Multivariate analyses revealed that tumor size and HINT2 expression are risk factors for HCC recurrence.HINT2 is down-regulated in HCC, and low HINT2 expression predicts earlier tumor recurrence. HINT2 expression may serve as a prognostic indicator of recurrence in HCC.
Collapse
Affiliation(s)
- Dong-Kai Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province
| | - Xiao-Hui Qian
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province
| | - Jun Cheng
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province
| | - Ling-Hui Chen
- Diagnosis and Treatment Center of Thyroid Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Wei-Lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province
| |
Collapse
|
5
|
HINT2 triggers mitochondrial Ca 2+ influx by regulating the mitochondrial Ca 2+ uniporter (MCU) complex and enhances gemcitabine apoptotic effect in pancreatic cancer. Cancer Lett 2017; 411:106-116. [PMID: 28947137 DOI: 10.1016/j.canlet.2017.09.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 12/20/2022]
Abstract
In early studies, it was shown that HINT2, which sensitizes cells to mitochondrial apoptosis, is down-regulated in hepatocellular carcinoma (HCC) cells (Martin et al., 2006). However, the molecular mechanism of this effect is unknown. Immunohistochemistry revealed that HINT2 expression is relatively low in pancreatic cancer tissues, compared to that in adjacent tissues (P < 0.05). Furthermore, its expression was related to pathological grade and lymph node metastasis (P = 0.0161 and 0.0108, respectively); in addition, down-regulation of HINT2 was found to be associated with relatively poor prognosis in pancreatic cancer patients. Up-regulation of HINT2 was shown to trigger pancreatic cancer cell apoptosis, decrease mitochondrial membrane potential (ΔΨm), promote intracellular reactive oxygen species (ROS) production, and elevate mitochondrial Ca2+ levels. However, co-treatment of HINT2 overexpressing BxPC-3 cells with ruthenium red partially inhibited HINT2-induced apoptosis, which was associated with a reduction in ΔΨm and an increase in intracellular ROS and mitochondrial Ca2+. According to our results, mitochondrial calcium uptake1 and 2 (MICU1 and MICU2) were down-regulated and the essential MCU regulator (EMRE) was up-regulated in cells transduced with Adv-HINT2. Therefore, we deduced that HINT2 triggers apoptosis in pancreatic cancer cells by regulating mitochondrial Ca2+ influx through the mitochondrial calcium uniporter (MCU). In addition, we found that HINT2 can sensitize BxPC-3 and L3.6pl cells to gemcitabine-induced apoptosis and that gemcitabine up-regulates HINT2 expression. This indicates that gemcitabine-induced apoptosis is related to HINT2 levels.
Collapse
|
6
|
Maize KM. Errors in Crystal structure of HINT from Helicobacter pylori. Acta Crystallogr F Struct Biol Commun 2016; 72:336-7. [PMID: 27050269 PMCID: PMC4822992 DOI: 10.1107/s2053230x16004088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/10/2016] [Indexed: 12/03/2022] Open
Abstract
Inaccuracies in the article, Crystal structure of HINT from Helicobacter pylori by Tarique et al. [(2016) Acta Cryst. F72, 42-48] are presented, and a brief history of HINT nomenclature is discussed.
Collapse
Affiliation(s)
- Kimberly M. Maize
- Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, 8-101 Weaver-Densford Hall, Minneapolis, Minnesota 55455, USA
| |
Collapse
|