1
|
Pfeil-Gardiner O, Rosa HVD, Riedel D, Chen YS, Lörks D, Kükelhan P, Linck M, Müller H, Van Petegem F, Murphy BJ. Elemental mapping in single-particle reconstructions by reconstructed electron energy-loss analysis. Nat Methods 2024; 21:2299-2306. [PMID: 39448878 PMCID: PMC11621030 DOI: 10.1038/s41592-024-02482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
For macromolecular structures determined by cryogenic electron microscopy, no technique currently exists for mapping elements to defined locations, leading to errors in the assignment of metals and other ions, cofactors, substrates, inhibitors and lipids that play essential roles in activity and regulation. Elemental mapping in the electron microscope is well established for dose-tolerant samples but is challenging for biological samples, especially in a cryo-preserved state. Here we combine electron energy-loss spectroscopy with single-particle image processing to allow elemental mapping in cryo-preserved macromolecular complexes. Proof-of-principle data show that our method, reconstructed electron energy-loss (REEL) analysis, allows a three-dimensional reconstruction of electron energy-loss spectroscopy data, such that a high total electron dose is accumulated across many copies of a complex. Working with two test samples, we demonstrate that we can reliably localize abundant elements. We discuss the current limitations of the method and potential future developments.
Collapse
Affiliation(s)
- Olivia Pfeil-Gardiner
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Higor Vinícius Dias Rosa
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt, Germany
- Mattei Lab, Structural and Computational Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Dietmar Riedel
- Facility for Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Yu Seby Chen
- The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | - Filip Van Petegem
- The University of British Columbia, Vancouver, British Columbia, Canada
| | - Bonnie J Murphy
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt, Germany.
| |
Collapse
|
2
|
Lecomte JTJ, Johnson EA. The globins of cyanobacteria and green algae: An update. Adv Microb Physiol 2024; 85:97-144. [PMID: 39059824 DOI: 10.1016/bs.ampbs.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The globin superfamily of proteins is ancient and diverse. Regular assessments based on the increasing number of available genome sequences have elaborated on a complex evolutionary history. In this review, we present a summary of a decade of advances in characterising the globins of cyanobacteria and green algae. The focus is on haem-containing globins with an emphasis on recent experimental developments, which reinforce links to nitrogen metabolism and nitrosative stress response in addition to dioxygen management. Mention is made of globins that do not bind haem to provide an encompassing view of the superfamily and perspective on the field. It is reiterated that an effort toward phenotypical and in-vivo characterisation is needed to elucidate the many roles that these versatile proteins fulfil in oxygenic photosynthetic microbes. It is also proposed that globins from oxygenic organisms are promising proteins for applications in the biotechnology arena.
Collapse
Affiliation(s)
- Juliette T J Lecomte
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States.
| | - Eric A Johnson
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
3
|
Beton JG, Cragnolini T, Kaleel M, Mulvaney T, Sweeney A, Topf M. Integrating model simulation tools and
cryo‐electron
microscopy. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Joseph George Beton
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Tristan Cragnolini
- Institute of Structural and Molecular Biology, Birkbeck and University College London London UK
| | - Manaz Kaleel
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Thomas Mulvaney
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Aaron Sweeney
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| |
Collapse
|
4
|
Zhou Y, Moscovich A, Bartesaghi A. Data-driven determination of number of discrete conformations in single-particle cryo-EM. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106892. [PMID: 35597206 PMCID: PMC10131080 DOI: 10.1016/j.cmpb.2022.106892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND OBJECTIVE One of the strengths of single-particle cryo-EM compared to other structural determination techniques is its ability to image heterogeneous samples containing multiple molecular species, different oligomeric states or distinct conformations. This is achieved using routines for in-silico 3D classification that are now well established in the field and have successfully been used to characterize the structural heterogeneity of important biomolecules. These techniques, however, rely on expert-user knowledge and trial-and-error experimentation to determine the correct number of conformations, making it a labor intensive, subjective, and difficult to reproduce procedure. METHODS We propose an approach to address the problem of automatically determining the number of discrete conformations present in heterogeneous single-particle cryo-EM datasets. We do this by systematically evaluating all possible partitions of the data and selecting the result that maximizes the average variance of similarities measured between particle images and the corresponding 3D reconstructions. RESULTS Using this strategy, we successfully analyzed datasets of heterogeneous protein complexes, including: 1) in-silico mixtures obtained by combining closely related antibody-bound HIV-1 Env trimers and other important membrane channels, and 2) naturally occurring mixtures from diverse and dynamic protein complexes representing varying degrees of structural heterogeneity and conformational plasticity. CONCLUSIONS The availability of unsupervised strategies for 3D classification combined with existing approaches for fully automatic pre-processing and 3D refinement, represents an important step towards converting single-particle cryo-EM into a high-throughput technique.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Amit Moscovich
- Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel
| | - Alberto Bartesaghi
- Department of Computer Science, Duke University, Durham, NC 27708, USA; Department of Biochemistry, Duke University School of Medicine, Durham, NC 27708, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
5
|
Mendonça DC, Guimarães SL, Pereira HD, Pinto AA, de Farias MA, de Godoy AS, Araujo APU, van Heel M, Portugal RV, Garratt RC. An atomic model for the human septin hexamer by cryo-EM. J Mol Biol 2021; 433:167096. [PMID: 34116125 DOI: 10.1016/j.jmb.2021.167096] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 01/22/2023]
Abstract
In order to form functional filaments, human septins must assemble into hetero-oligomeric rod-like particles which polymerize end-to-end. The rules governing the assembly of these particles and the subsequent filaments are incompletely understood. Although crystallographic approaches have been successful in studying the separate components of the system, there has been difficulty in obtaining high resolution structures of the full particle. Here we report a first cryo-EM structure for a hexameric rod composed of human septins 2, 6 and 7 with a global resolution of ~3.6 Å and a local resolution of between ~3.0 Å and ~5.0 Å. By fitting the previously determined high-resolution crystal structures of the component subunits into the cryo-EM map, we are able to provide an essentially complete model for the particle. This exposes SEPT2 NC-interfaces at the termini of the hexamer and leaves internal cavities between the SEPT6-SEPT7 pairs. The floor of the cavity is formed by the two α0 helices including their polybasic regions. These are locked into place between the two subunits by interactions made with the α5 and α6 helices of the neighbouring monomer together with its polyacidic region. The cavity may serve to provide space allowing the subunits to move with respect to one another. The elongated particle shows a tendency to bend at its centre where two copies of SEPT7 form a homodimeric G-interface. Such bending is almost certainly related to the ability of septin filaments to recognize and even induce membrane curvature.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ana P U Araujo
- São Carlos Institute of Physics, USP, São Carlos, SP, Brazil
| | - Marin van Heel
- Brazilian Nanotechnology National Laboratory, CNPEM, Campinas, SP, Brazil
| | - Rodrigo V Portugal
- Brazilian Nanotechnology National Laboratory, CNPEM, Campinas, SP, Brazil.
| | | |
Collapse
|
6
|
Cryo-EM structure of the mature and infective Mayaro virus at 4.4 Å resolution reveals features of arthritogenic alphaviruses. Nat Commun 2021; 12:3038. [PMID: 34031424 PMCID: PMC8144435 DOI: 10.1038/s41467-021-23400-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/27/2021] [Indexed: 12/19/2022] Open
Abstract
Mayaro virus (MAYV) is an emerging arbovirus of the Americas that may cause a debilitating arthritogenic disease. The biology of MAYV is not fully understood and largely inferred from related arthritogenic alphaviruses. Here, we present the structure of MAYV at 4.4 Å resolution, obtained from a preparation of mature, infective virions. MAYV presents typical alphavirus features and organization. Interactions between viral proteins that lead to particle formation are described together with a hydrophobic pocket formed between E1 and E2 spike proteins and conformational epitopes specific of MAYV. We also describe MAYV glycosylation residues in E1 and E2 that may affect MXRA8 host receptor binding, and a molecular “handshake” between MAYV spikes formed by N262 glycosylation in adjacent E2 proteins. The structure of MAYV is suggestive of structural and functional complexity among alphaviruses, which may be targeted for specificity or antiviral activity. Mayaro virus (MAYV) is an emerging arbovirus in Central and South America that is transmitted by mosquitoes and causes arthritogenic disease. Here, the authors present the 4.4 Å resolution cryo-EM structure of MAYV and describe specific features of the virus, which could be exploited for the design of MAYV-specific diagnostics and therapeutics.
Collapse
|
7
|
Abstract
A density-modification procedure for improving maps from single-particle electron cryogenic microscopy (cryo-EM) is presented. The theoretical basis of the method is identical to that of maximum-likelihood density modification, previously used to improve maps from macromolecular X-ray crystallography. Key differences from applications in crystallography are that the errors in Fourier coefficients are largely in the phases in crystallography but in both phases and amplitudes in cryo-EM, and that half-maps with independent errors are available in cryo-EM. These differences lead to a distinct approach for combination of information from starting maps with information obtained in the density-modification process. The density-modification procedure was applied to a set of 104 datasets and improved map-model correlation and increased the visibility of details in many of the maps. The procedure requires two unmasked half-maps and a sequence file or other source of information on the volume of the macromolecule that has been imaged.
Collapse
|
8
|
Ortiz S, Stanisic L, Rodriguez BA, Rampp M, Hummer G, Cossio P. Validation tests for cryo-EM maps using an independent particle set. J Struct Biol X 2020; 4:100032. [PMID: 32743544 PMCID: PMC7385033 DOI: 10.1016/j.yjsbx.2020.100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cryo-electron microscopy (cryo-EM) has revolutionized structural biology by providing 3D density maps of biomolecules at near-atomic resolution. However, map validation is still an open issue. Despite several efforts from the community, it is possible to overfit 3D maps to noisy data. Here, we develop a novel methodology that uses a small independent particle set (not used during the 3D refinement) to validate the maps. The main idea is to monitor how the map probability evolves over the control set during the 3D refinement. The method is complementary to the gold-standard procedure, which generates two reconstructions at each iteration. We low-pass filter the two reconstructions for different frequency cutoffs, and we calculate the probability of each filtered map given the control set. For high-quality maps, the probability should increase as a function of the frequency cutoff and the refinement iteration. We also compute the similarity between the densities of probability distributions of the two reconstructions. As higher frequencies are included, the distributions become more dissimilar. We optimized the BioEM package to perform these calculations, and tested it over systems ranging from quality data to pure noise. Our results show that with our methodology, it possible to discriminate datasets that are constructed from noise particles. We conclude that validation against a control particle set provides a powerful tool to assess the quality of cryo-EM maps.
Collapse
Affiliation(s)
- Sebastian Ortiz
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Luka Stanisic
- Max Planck Computing and Data Facility, 85748 Garching, Germany
| | - Boris A Rodriguez
- Grupo de Fósica Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Markus Rampp
- Max Planck Computing and Data Facility, 85748 Garching, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
- Institute of Biophysics, Goethe University, 60438 Frankfurt am Main, Germany
| | - Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
9
|
Ravelli RBG, Nijpels FJT, Henderikx RJM, Weissenberger G, Thewessem S, Gijsbers A, Beulen BWAMM, López-Iglesias C, Peters PJ. Cryo-EM structures from sub-nl volumes using pin-printing and jet vitrification. Nat Commun 2020; 11:2563. [PMID: 32444637 PMCID: PMC7244535 DOI: 10.1038/s41467-020-16392-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/17/2020] [Indexed: 01/17/2023] Open
Abstract
The increasing demand for cryo-electron microscopy (cryo-EM) reveals drawbacks in current sample preparation protocols, such as sample waste and lack of reproducibility. Here, we present several technical developments that provide efficient sample preparation for cryo-EM studies. Pin printing substantially reduces sample waste by depositing only a sub-nanoliter volume of sample on the carrier surface. Sample evaporation is mitigated by dewpoint control feedback loops. The deposited sample is vitrified by jets of cryogen followed by submersion into a cryogen bath. Because the cryogen jets cool the sample from the center, premounted autogrids can be used and loaded directly into automated cryo-EMs. We integrated these steps into a single device, named VitroJet. The device’s performance was validated by resolving four standard proteins (apoferritin, GroEL, worm hemoglobin, beta-galactosidase) to ~3 Å resolution using a 200-kV electron microscope. The VitroJet offers a promising solution for improved automated sample preparation in cryo-EM studies. There is a need to further improve the automation of cryo-EM sample preparation to make it more easily accessible for non-specialists, reduce sample waste and increase reproducibility. Here, the authors present VitroJet, a single device, where sub-nl volumes of samples are deposited by pin printing thus eliminating the need for sample blotting, which is followed by jet vitrification, and they show that high-resolution structures can be obtained using four standard proteins.
Collapse
Affiliation(s)
- Raimond B G Ravelli
- The Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, Netherlands.
| | - Frank J T Nijpels
- The Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, Netherlands.,CryoSol-World, Maastricht, Netherlands
| | - Rene J M Henderikx
- The Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, Netherlands.,CryoSol-World, Maastricht, Netherlands
| | - Giulia Weissenberger
- The Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, Netherlands.,CryoSol-World, Maastricht, Netherlands
| | - Sanne Thewessem
- Instrument Development, Engineering and Evaluation (IDEE), Maastricht University, Maastricht, Netherlands
| | - Abril Gijsbers
- The Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, Netherlands
| | - Bart W A M M Beulen
- CryoSol-World, Maastricht, Netherlands.,Instrument Development, Engineering and Evaluation (IDEE), Maastricht University, Maastricht, Netherlands
| | - Carmen López-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, Netherlands. .,CryoSol-World, Maastricht, Netherlands.
| |
Collapse
|
10
|
Riciluca KCT, Borges AC, Mello JFR, de Oliveira UC, Serdan DC, Florez-Ariza A, Chaparro E, Nishiyama MY, Cassago A, Junqueira-de-Azevedo ILM, van Heel M, Silva PI, Portugal RV. Myriapod haemocyanin: the first three-dimensional reconstruction of Scolopendra subspinipes and preliminary structural analysis of S. viridicornis. Open Biol 2020; 10:190258. [PMID: 32228398 PMCID: PMC7241075 DOI: 10.1098/rsob.190258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Haemocyanins (Hcs) are copper-containing, respiratory proteins that occur in the haemolymph of many arthropod species. Here, we report the presence of Hcs in the chilopode Myriapoda, demonstrating that these proteins are more widespread among the Arthropoda than previously thought. The analysis of transcriptome of S. subspinipes subpinipes reveals the presence of two distinct subunits of Hc, where the signal peptide is present, and six of prophenoloxidase (PPO), where the signal peptide is absent, in the 75 kDa range. Size exclusion chromatography profiles indicate different quaternary organization for Hc of both species, which was corroborated by TEM analysis: S. viridicornis Hc is a 6 × 6-mer and S. subspinipes Hc is a 3 × 6-mer, which resembles the half-structure of the 6 × 6-mer but also includes the presence of phenoloxidases, since the 1 × 6-mer quaternary organization is commonly associated with hexamers of PPO. Studies with Chelicerata showed that PPO activity are exclusively associated with the Hcs. This study indicates that Scolopendra may have different proteins playing oxygen transport (Hc) and PO function, both following the hexameric oligomerization observed in Hcs.
Collapse
Affiliation(s)
- K C T Riciluca
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil.,Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil
| | - A C Borges
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - J F R Mello
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - U C de Oliveira
- Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil
| | - D C Serdan
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - A Florez-Ariza
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - E Chaparro
- Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil.,Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | - M Y Nishiyama
- Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil
| | - A Cassago
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - I L M Junqueira-de-Azevedo
- Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil
| | - M van Heel
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - P I Silva
- Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil.,Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | - R V Portugal
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| |
Collapse
|
11
|
Akbar S, Mozumder S, Sengupta J. Retrospect and Prospect of Single Particle Cryo-Electron Microscopy: The Class of Integral Membrane Proteins as an Example. J Chem Inf Model 2020; 60:2448-2457. [DOI: 10.1021/acs.jcim.9b01015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shirin Akbar
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sukanya Mozumder
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jayati Sengupta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Abstract
Cross-validation is used to determine the validity of a model on unseen data by assessing if the model is overfitted to noise. It is widely used in many fields, from artificial intelligence to structural biology in X-ray crystallography and nuclear magnetic resonance. Although there are concerns of map overfitting in cryo-electron microscopy (cryo-EM), cross-validation is rarely used. The problem is that establishing a performance metric of the maps over unseen data (given by 2D-projection images) is difficult due to the low signal-to-noise ratios in the individual particles. Here, I present recent advances for cryo-EM map reconstruction. I highlight that the gold-standard procedure can fail to detect map overfitting in certain cases, showing the necessity of assessing the map quality on unbiased data. Finally, I describe the challenges and advantages of developing a robust cross-validation methodology for cryo-EM.
Collapse
Affiliation(s)
- Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia.,Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
13
|
Mendonça DC, Macedo JN, Guimarães SL, Barroso da Silva FL, Cassago A, Garratt RC, Portugal RV, Araujo APU. A revised order of subunits in mammalian septin complexes. Cytoskeleton (Hoboken) 2019; 76:457-466. [PMID: 31608568 DOI: 10.1002/cm.21569] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022]
Abstract
Septins are GTP binding proteins considered to be novel components of the cytoskeleton. They polymerize into filaments based on hexameric or octameric core particles in which two copies of either three or four different septins, respectively, assemble into a specific sequence. Viable combinations of the 13 human septins are believed to obey substitution rules in which the different septins involved must come from distinct subgroups. The hexameric assembly, for example, has been reported to be SEPT7-SEPT6-SEPT2-SEPT2-SEPT6-SEPT7. Here, we have replaced SEPT2 by SEPT5 according to the substitution rules and used transmission electron microscopy to demonstrate that the resulting recombinant complex assembles into hexameric particles which are inverted with respect that predicted previously. MBP-SEPT5 constructs and immunostaining show that SEPT5 occupies the terminal positions of the hexamer. We further show that this is also true for the assembly including SEPT2, in direct contradiction with that reported previously. Consequently, both complexes expose an NC interface, as reported for yeast, which we show to be more susceptible to high salt concentrations. The correct assembly for the canonical combination of septins 2-6-7 is therefore established to be SEPT2-SEPT6-SEPT7-SEPT7-SEPT6-SEPT2, implying the need for revision of the mechanisms involved in filament assembly.
Collapse
Affiliation(s)
| | - Joci N Macedo
- São Carlos Institute of Physics, USP, São Carlos, SP, Brazil
- Federal Institute of Education, Science and Technology of Rondonia
| | | | - Fernando L Barroso da Silva
- Faculty of Pharmaceutical Sciences, USP, Ribeirão Preto, SP, Brazil
- UMR_S 1134, Université Paris Diderot, Paris, France
| | - Alexandre Cassago
- Brazilian Nanotechnology National Laboratory, CNPEM, Campinas, SP, Brazil
| | | | - Rodrigo V Portugal
- Brazilian Nanotechnology National Laboratory, CNPEM, Campinas, SP, Brazil
| | - Ana P U Araujo
- São Carlos Institute of Physics, USP, São Carlos, SP, Brazil
| |
Collapse
|
14
|
Kim DN, Moriarty NW, Kirmizialtin S, Afonine PV, Poon B, Sobolev OV, Adams PD, Sanbonmatsu K. Cryo_fit: Democratization of flexible fitting for cryo-EM. J Struct Biol 2019; 208:1-6. [PMID: 31279069 PMCID: PMC7112765 DOI: 10.1016/j.jsb.2019.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022]
Abstract
Cryo-electron microscopy (cryo-EM) is becoming a method of choice for describing native conformations of biomolecular complexes at high resolution. The rapid growth of cryo-EM in recent years has created a high demand for automated solutions, both in hardware and software. Flexible fitting of atomic models to three-dimensional (3D) cryo-EM reconstructions by molecular dynamics (MD) simulation is a popular technique but often requires technical expertise in computer simulation. This work introduces cryo_fit, a package for the automatic flexible fitting of atomic models in cryo-EM maps using MD simulation. The package is integrated with the Phenix software suite. The module was designed to automate the multiple steps of MD simulation in a reproducible manner, as well as facilitate refinement and validation through Phenix. Through the use of cryo_fit, scientists with little experience in MD simulation can produce high quality atomic models automatically and better exploit the potential of cryo-EM.
Collapse
Affiliation(s)
- Doo Nam Kim
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Nigel W Moriarty
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, USA
| | - Serdal Kirmizialtin
- Chemistry Program, Science Division, New York University, Abu Dhabi, United Arab Emirates
| | - Pavel V Afonine
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, USA
| | - Billy Poon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, USA
| | - Oleg V Sobolev
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, USA
| | - Paul D Adams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, USA; Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Karissa Sanbonmatsu
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA; New Mexico Consortium, Los Alamos, NM, USA.
| |
Collapse
|
15
|
Structure Determination by Single-Particle Cryo-Electron Microscopy: Only the Sky (and Intrinsic Disorder) is the Limit. Int J Mol Sci 2019; 20:ijms20174186. [PMID: 31461845 PMCID: PMC6747279 DOI: 10.3390/ijms20174186] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022] Open
Abstract
Traditionally, X-ray crystallography and NMR spectroscopy represent major workhorses of structural biologists, with the lion share of protein structures reported in protein data bank (PDB) being generated by these powerful techniques. Despite their wide utilization in protein structure determination, these two techniques have logical limitations, with X-ray crystallography being unsuitable for the analysis of highly dynamic structures and with NMR spectroscopy being restricted to the analysis of relatively small proteins. In recent years, we have witnessed an explosive development of the techniques based on Cryo-electron microscopy (Cryo-EM) for structural characterization of biological molecules. In fact, single-particle Cryo-EM is a special niche as it is a technique of choice for the structural analysis of large, structurally heterogeneous, and dynamic complexes. Here, sub-nanometer atomic resolution can be achieved (i.e., resolution below 10 Å) via single-particle imaging of non-crystalline specimens, with accurate 3D reconstruction being generated based on the computational averaging of multiple 2D projection images of the same particle that was frozen rapidly in solution. We provide here a brief overview of single-particle Cryo-EM and show how Cryo-EM has revolutionized structural investigations of membrane proteins. We also show that the presence of intrinsically disordered or flexible regions in a target protein represents one of the major limitations of this promising technique.
Collapse
|
16
|
Rational modulator design by exploitation of protein-protein complex structures. Future Med Chem 2019; 11:1015-1033. [PMID: 31141413 DOI: 10.4155/fmc-2018-0433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The horizon of drug discovery is currently expanding to target and modulate protein-protein interactions (PPIs) in globular proteins and intrinsically disordered proteins that are involved in various diseases. To either interrupt or stabilize PPIs, the 3D structure of target protein-protein (or protein-peptide) complexes can be exploited to rationally design PPI modulators (inhibitors or stabilizers) through structure-based molecular design. In this review, we present an overview of experimental and computational methods that can be used to determine 3D structures of protein-protein complexes. Several approaches including rational and in silico methods that can be applied to design peptides, peptidomimetics and small compounds by utilization of determined 3D protein-protein/peptide complexes are summarized and illustrated.
Collapse
|
17
|
Kovacs JA, Galkin VE, Wriggers W. Accurate flexible refinement of atomic models against medium-resolution cryo-EM maps using damped dynamics. BMC STRUCTURAL BIOLOGY 2018; 18:12. [PMID: 30219048 PMCID: PMC6139150 DOI: 10.1186/s12900-018-0089-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 08/02/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Dramatic progress has recently been made in cryo-electron microscopy technologies, which now make possible the reconstruction of a growing number of biomolecular structures to near-atomic resolution. However, the need persists for fitting and refinement approaches that address those cases that require modeling assistance. METHODS In this paper, we describe algorithms to optimize the performance of such medium-resolution refinement methods. These algorithms aim to automatically optimize the parameters that define the density shape of the flexibly fitted model, as well as the time-dependent damper cutoff distance. Atomic distance constraints can be prescribed for cases where extra containment of parts of the structure is helpful, such as in regions where the density map is poorly defined. Also, we propose a simple stopping criterion that estimates the probable onset of overfitting during the simulation. RESULTS The new set of algorithms produce more accurate fitting and refinement results, and yield a faster rate of convergence of the trajectory toward the fitted conformation. The latter is also more reliable due to the overfitting warning provided to the user. CONCLUSIONS The algorithms described here were implemented in the new Damped-Dynamics Flexible Fitting simulation tool "DDforge" in the Situs package.
Collapse
Affiliation(s)
- Julio A Kovacs
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, USA
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Willy Wriggers
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
18
|
Afonine PV, Klaholz BP, Moriarty NW, Poon BK, Sobolev OV, Terwilliger TC, Adams PD, Urzhumtsev A. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr D Struct Biol 2018; 74:814-840. [PMID: 30198894 PMCID: PMC6130467 DOI: 10.1107/s2059798318009324] [Citation(s) in RCA: 509] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 06/27/2018] [Indexed: 11/25/2022] Open
Abstract
Recent advances in the field of electron cryomicroscopy (cryo-EM) have resulted in a rapidly increasing number of atomic models of biomacromolecules that have been solved using this technique and deposited in the Protein Data Bank and the Electron Microscopy Data Bank. Similar to macromolecular crystallography, validation tools for these models and maps are required. While some of these validation tools may be borrowed from crystallography, new methods specifically designed for cryo-EM validation are required. Here, new computational methods and tools implemented in PHENIX are discussed, including d99 to estimate resolution, phenix.auto_sharpen to improve maps and phenix.mtriage to analyze cryo-EM maps. It is suggested that cryo-EM half-maps and masks should be deposited to facilitate the evaluation and validation of cryo-EM-derived atomic models and maps. The application of these tools to deposited cryo-EM atomic models and maps is also presented.
Collapse
Affiliation(s)
- Pavel V. Afonine
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Physics and International Centre for Quantum and Molecular Structures, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Bruno P. Klaholz
- Centre for Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | - Nigel W. Moriarty
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Billy K. Poon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Oleg V. Sobolev
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Thomas C. Terwilliger
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Paul D. Adams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Alexandre Urzhumtsev
- Centre for Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
- Faculté des Sciences et Technologies, Université de Lorraine, BP 239, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
19
|
Alfieri C, Chang L, Barford D. Mechanism for remodelling of the cell cycle checkpoint protein MAD2 by the ATPase TRIP13. Nature 2018; 559:274-278. [PMID: 29973720 PMCID: PMC6057611 DOI: 10.1038/s41586-018-0281-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/16/2018] [Indexed: 11/09/2022]
Abstract
The maintenance of genome stability during mitosis is coordinated by the spindle assembly checkpoint (SAC) through its effector the mitotic checkpoint complex (MCC), an inhibitor of the anaphase-promoting complex (APC/C, also known as the cyclosome)1,2. Unattached kinetochores control MCC assembly by catalysing a change in the topology of the β-sheet of MAD2 (an MCC subunit), thereby generating the active closed MAD2 (C-MAD2) conformer3-5. Disassembly of free MCC, which is required for SAC inactivation and chromosome segregation, is an ATP-dependent process driven by the AAA+ ATPase TRIP13. In combination with p31comet, an SAC antagonist6, TRIP13 remodels C-MAD2 into inactive open MAD2 (O-MAD2)7-10. Here, we present a mechanism that explains how TRIP13-p31comet disassembles the MCC. Cryo-electron microscopy structures of the TRIP13-p31comet-C-MAD2-CDC20 complex reveal that p31comet recruits C-MAD2 to a defined site on the TRIP13 hexameric ring, positioning the N terminus of C-MAD2 (MAD2NT) to insert into the axial pore of TRIP13 and distorting the TRIP13 ring to initiate remodelling. Molecular modelling suggests that by gripping MAD2NT within its axial pore, TRIP13 couples sequential ATP-driven translocation of its hexameric ring along MAD2NT to push upwards on, and simultaneously rotate, the globular domains of the p31comet-C-MAD2 complex. This unwinds a region of the αA helix of C-MAD2 that is required to stabilize the C-MAD2 β-sheet, thus destabilizing C-MAD2 in favour of O-MAD2 and dissociating MAD2 from p31comet. Our study provides insights into how specific substrates are recruited to AAA+ ATPases through adaptor proteins and suggests a model of how translocation through the axial pore of AAA+ ATPases is coupled to protein remodelling.
Collapse
Affiliation(s)
| | - Leifu Chang
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|