1
|
da Silva FC, Kamuyu G, Michels B, Edney J, Hassall L, Stickings P, Maharjan S, Waterboer T, Beddows S. Candidate antibody reference reagents for Chlamydia trachomatis serology. J Immunol Methods 2024; 534:113761. [PMID: 39326782 DOI: 10.1016/j.jim.2024.113761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/07/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Chlamydia trachomatis (Ct) serology is an important tool for monitoring infection and disease burden but there are currently no formal reference reagents to harmonize results reporting. Our objective was to develop a panel of candidate reference reagents with reactivity against the major outer membrane protein (MOMP) and virulence factor (pgp3) antigens. Plasma packs from females (20-40 years old) were screened against MOMP and pgp3 antigens and selected positive and negative samples pooled to create a panel of candidate antibody reference reagents that were tested in two laboratories. Antigen specificity and internal quality assurance were also evaluated. Suitable candidate materials have been selected to produce Ct reference reagents.
Collapse
Affiliation(s)
- Filomeno Coelho da Silva
- Virus Reference Department, Public Health Microbiology Division, UK Health Security Agency, London, UK
| | - Gathoni Kamuyu
- Virus Reference Department, Public Health Microbiology Division, UK Health Security Agency, London, UK
| | - Birgitta Michels
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jessica Edney
- Virus Reference Department, Public Health Microbiology Division, UK Health Security Agency, London, UK
| | - Laura Hassall
- Medicines and Healthcare products Regulatory Agency (MHRA), National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar, UK
| | - Paul Stickings
- Medicines and Healthcare products Regulatory Agency (MHRA), National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar, UK
| | - Sunil Maharjan
- Medicines and Healthcare products Regulatory Agency (MHRA), National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar, UK
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Beddows
- Virus Reference Department, Public Health Microbiology Division, UK Health Security Agency, London, UK; Blood Safety, Hepatitis, Sexually Transmitted Infections and HIV Division, UK Health Security Agency, London, UK.
| |
Collapse
|
2
|
Turman BJ, Darville T, O'Connell CM. Plasmid-mediated virulence in Chlamydia. Front Cell Infect Microbiol 2023; 13:1251135. [PMID: 37662000 PMCID: PMC10469868 DOI: 10.3389/fcimb.2023.1251135] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Chlamydia trachomatis infection of ocular conjunctiva can lead to blindness, while infection of the female genital tract can lead to chronic pelvic pain, ectopic pregnancy, and/or infertility. Conjunctival and fallopian tube inflammation and the resulting disease sequelae are attributed to immune responses induced by chlamydial infection at these mucosal sites. The conserved chlamydial plasmid has been implicated in enhancing infection, via improved host cell entry and exit, and accelerating innate inflammatory responses that lead to tissue damage. The chlamydial plasmid encodes eight open reading frames, three of which have been associated with virulence: a secreted protein, Pgp3, and putative transcriptional regulators, Pgp4 and Pgp5. Although Pgp3 is an important plasmid-encoded virulence factor, recent studies suggest that chlamydial plasmid-mediated virulence extends beyond the expression of Pgp3. In this review, we discuss studies of genital, ocular, and gastrointestinal infection with C. trachomatis or C. muridarum that shed light on the role of the plasmid in disease development, and the potential for tissue and species-specific differences in plasmid-mediated pathogenesis. We also review evidence that plasmid-associated inflammation can be independent of bacterial burden. The functions of each of the plasmid-encoded proteins and potential molecular mechanisms for their role(s) in chlamydial virulence are discussed. Although the understanding of plasmid-associated virulence has expanded within the last decade, many questions related to how and to what extent the plasmid influences chlamydial infectivity and inflammation remain unknown, particularly with respect to human infections. Elucidating the answers to these questions could improve our understanding of how chlamydia augment infection and inflammation to cause disease.
Collapse
Affiliation(s)
- Breanna J. Turman
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Toni Darville
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, United States
| | | |
Collapse
|
3
|
Huang Y, Wu H, Sun Y, Liu Y. Tryptophan residue of plasmid-encoded Pgp3 is important for Chlamydia muridarum to induce hydrosalpinx in mice. Front Microbiol 2023; 14:1216372. [PMID: 37497542 PMCID: PMC10367112 DOI: 10.3389/fmicb.2023.1216372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023] Open
Abstract
The crucial role of plasmid-encoded protein Pgp3 in Chlamydia pathogenesis has been demonstrated in various animal models. Previous studies have revealed that the Pgp3-deficient C. muridarum mutant fails to induce hydrosalpinx after vaginal inoculation in mice. Structural analysis of C. trachomatis Pgp3 trimer has indicated that Trp234 may play a critical role in trimeric crystal packing interactions and that Tyr197 is involved at predominant cation-binding sites. In this study, we constructed C. muridarum transformants harboring Pgp3, Trp234, or Tyr197 point mutations (Pgp3W234A and Pgp3Y197A). C3H/HeJ mice infected with Pgp3W234A mutant failed to induce severe hydrosalpinx in the oviduct tissue, which largely phenocopied the full-length Pgp3-deficient C. muridarum. The Pgp3Y197A variant induced an intermediate severity of pathology. The attenuated pathogenicity caused by the Pgp3W234A mutant may be due to its decreased survival in the lower genital tracts of mice, reduced ascension to the oviduct, and milder induction of inflammatory cell infiltration in the oviduct tissue. Thus, our results point to an important amino acid residue involved in Pgp3 virulence, providing a potential therapeutic target for chlamydial infection.
Collapse
Affiliation(s)
- Yumeng Huang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Haoqing Wu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Yina Sun
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital, Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yuanjun Liu
- Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Jones CA, Hadfield J, Thomson NR, Cleary DW, Marsh P, Clarke IN, O’Neill CE. The Nature and Extent of Plasmid Variation in Chlamydia trachomatis. Microorganisms 2020; 8:microorganisms8030373. [PMID: 32155798 PMCID: PMC7143637 DOI: 10.3390/microorganisms8030373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/03/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen of humans, causing both the sexually transmitted infection, chlamydia, and the most common cause of infectious blindness, trachoma. The majority of sequenced C. trachomatis clinical isolates carry a 7.5-Kb plasmid, and it is becoming increasingly evident that this is a key determinant of pathogenicity. The discovery of the Swedish New Variant and the more recent Finnish variant highlight the importance of understanding the natural extent of variation in the plasmid. In this study we analysed 524 plasmid sequences from publicly available whole-genome sequence data. Single nucleotide polymorphisms (SNP) in each of the eight coding sequences (CDS) were identified and analysed. There were 224 base positions out of a total 7550 bp that carried a SNP, which equates to a SNP rate of 2.97%, nearly three times what was previously calculated. After normalising for CDS size, CDS8 had the highest SNP rate at 3.97% (i.e., number of SNPs per total number of nucleotides), whilst CDS6 had the lowest at 1.94%. CDS5 had the highest total number of SNPs across the 524 sequences analysed (2267 SNPs), whereas CDS6 had the least SNPs with only 85 SNPs. Calculation of the genetic distances identified CDS6 as the least variable gene at the nucleotide level (d = 0.001), and CDS5 as the most variable (d = 0.007); however, at the amino acid level CDS2 was the least variable (d = 0.001), whilst CDS5 remained the most variable (d = 0.013). This study describes the largest in-depth analysis of the C. trachomatis plasmid to date, through the analysis of plasmid sequence data mined from whole genome sequences spanning 50 years and from a worldwide distribution, providing insights into the nature and extent of existing variation within the plasmid as well as guidance for the design of future diagnostic assays. This is crucial at a time when single-target diagnostic assays are failing to detect natural mutants, putting those infected at risk of a serious long-term and life-changing illness.
Collapse
Affiliation(s)
- Charlotte A. Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
| | - James Hadfield
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA;
| | - Nicholas R. Thomson
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK;
| | - David W. Cleary
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
| | - Peter Marsh
- Public Health England, Porton Down, Wiltshire SP40JG, UK;
| | - Ian N. Clarke
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
| | - Colette E. O’Neill
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
- Correspondence:
| |
Collapse
|