1
|
Manna A, Sonker M, Koh D, Steiger M, Ansari A, Hu H, Quereda-Moraleda I, Grieco A, Doppler D, de Sanctis D, Basu S, Orlans J, Rose SL, Botha S, Martin-Garcia JM, Ros A. Cyclic Olefin Copolymer-Based Fixed-Target Sample Delivery Device for Protein X-ray Crystallography. Anal Chem 2024. [PMID: 39679637 DOI: 10.1021/acs.analchem.4c03484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Serial macromolecular X-ray crystallography plays an important role in elucidating protein structures and consequently progressing the field of targeted therapeutics. The use of pulsed beams at different repetition frequencies requires the development of various sample-conserving injection strategies to minimize sample wastage between X-ray exposures. Fixed-target sample delivery methods that use solid support to hold the crystals in the X-ray beam path are gaining interest as a sample-conserving delivery system for X-ray crystallography with high crystal hit rates. Here, we present a novel fixed-target microfluidic system for delivering protein microcrystals to X-ray beams for diffraction data collection and structure determination. The fixed-target design consists of 3 symmetric sections arranged in an area of 1 in. × 1 in. with up to 18,000 crystal traps per device. Each trap is targeted to hold one crystal up to 50 μm in size in the largest dimension. The device has been fabricated using cyclic olefin copolymer (COC) for high-quality diffraction data collection with low background scattering induced through the fixed-target material. The newly developed fixed-target device is designed for vacuum compatibility which will enable the use in vacuum experimental chambers of X-ray radiation sources including the newly developed, first-of-its-kind compact X-ray light source (CXLS), which is currently in commissioning at Arizona State University. To assess the validity of the COC device, serial crystallography experiments were performed on the model protein lysozyme at the new European Synchrotron Radiation Facility-Extremely Brilliant Source (ESRF-EBS) beamline ID29. A 1.6 Å crystal structure of the protein was solved, demonstrating that, in general, the COC device can be used to generate high-quality data from macromolecular crystals at the CXLS and synchrotron radiation sources, which holds enormous potential for advancing the field of protein structure determination by fixed-target X-ray crystallography.
Collapse
Affiliation(s)
- Abhik Manna
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Domin Koh
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Michael Steiger
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Adil Ansari
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Hao Hu
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Isabel Quereda-Moraleda
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid 28006, Spain
| | - Alice Grieco
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid 28006, Spain
| | - Diandra Doppler
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | | | - Shibom Basu
- European Molecular Biology Laboratory, 38042 Grenoble, France
| | - Julien Orlans
- ESRF─The European Synchrotron, P.O. Box 38000 Grenoble, France
| | - Samuel L Rose
- ESRF─The European Synchrotron, P.O. Box 38000 Grenoble, France
| | - Sabine Botha
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Jose Manuel Martin-Garcia
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid 28006, Spain
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
2
|
Havlickova P, Gavira JA, Mesters JR, Koutska A, Kascakova B, Prudnikova T, Hilgenfeld R, Garcia-Ruiz JM, Rezacova P, Kuta Smatanova I. Practical courses on advanced methods in macromolecular crystallization: 20 years of history and future perspectives. J Appl Crystallogr 2024; 57:1609-1617. [PMID: 39387072 PMCID: PMC11460401 DOI: 10.1107/s1600576724007106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 10/12/2024] Open
Abstract
The first Federation of European Biochemical Societies Advanced Course on macromolecular crystallization was launched in the Czech Republic in October 2004. Over the past two decades, the course has developed into a distinguished event, attracting students, early career postdoctoral researchers and lecturers. The course topics include protein purification, characterization and crystallization, covering the latest advances in the field of structural biology. The many hands-on practical exercises enable a close interaction between students and teachers and offer the opportunity for students to crystallize their own proteins. The course has a broad and lasting impact on the scientific community as participants return to their home laboratories and act as nuclei by communicating and implementing their newly acquired knowledge and skills.
Collapse
Affiliation(s)
- Petra Havlickova
- Department of Chemistry, Faculty of ScienceUniversity of South Bohemia in Ceske BudejoviceBranisovska 176037005Ceske BudejoviceCzechia
| | - Jose A. Gavira
- Laboratorio de Estudios CristalográficosInstituto Andaluz de Ciencias de la Tierra (CSIC)Avenida de las Palmeras 418100ArmillaGranadaSpain
| | - Jeroen R. Mesters
- Institute of BiochemistryUniversity of LübeckRatzeburger Allee 16023562LübeckGermany
| | - Anna Koutska
- Department of Chemistry, Faculty of ScienceUniversity of South Bohemia in Ceske BudejoviceBranisovska 176037005Ceske BudejoviceCzechia
| | - Barbora Kascakova
- Department of Chemistry, Faculty of ScienceUniversity of South Bohemia in Ceske BudejoviceBranisovska 176037005Ceske BudejoviceCzechia
| | - Tatyana Prudnikova
- Department of Chemistry, Faculty of ScienceUniversity of South Bohemia in Ceske BudejoviceBranisovska 176037005Ceske BudejoviceCzechia
| | - Rolf Hilgenfeld
- Institute of Molecular MedicineUniversity of LübeckRatzeburger Allee 16023562LübeckGermany
| | - Juan Manuel Garcia-Ruiz
- Laboratorio de Estudios CristalográficosInstituto Andaluz de Ciencias de la Tierra (CSIC)Avenida de las Palmeras 418100ArmillaGranadaSpain
- Donostia International Physics CenterPaseo Manuel de Lardizabal 420018San SebastianSpain
| | - Pavlina Rezacova
- Institute of Organic Chemistry and Biochemistry, AS CRFlemingovo n. 2166 10Prague 6Czechia
| | - Ivana Kuta Smatanova
- Department of Chemistry, Faculty of ScienceUniversity of South Bohemia in Ceske BudejoviceBranisovska 176037005Ceske BudejoviceCzechia
| |
Collapse
|
3
|
Chavas LMG, Coulibaly F, Garriga D. Bridging the microscopic divide: a comprehensive overview of micro-crystallization and in vivo crystallography. IUCRJ 2024; 11:476-485. [PMID: 38958014 PMCID: PMC11220871 DOI: 10.1107/s205225252400513x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
A series of events underscoring the significant advancements in micro-crystallization and in vivo crystallography were held during the 26th IUCr Congress in Melbourne, positioning microcrystallography as a pivotal field within structural biology. Through collaborative discussions and the sharing of innovative methodologies, these sessions outlined frontier approaches in macromolecular crystallography. This review provides an overview of this rapidly moving field in light of the rich dialogues and forward-thinking proposals explored during the congress workshop and microsymposium. These advances in microcrystallography shed light on the potential to reshape current research paradigms and enhance our comprehension of biological mechanisms at the molecular scale.
Collapse
Affiliation(s)
| | - Fasséli Coulibaly
- Biomedicine Discovery Institute & Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | | |
Collapse
|
4
|
Gu KK, Liu Z, Narayanasamy SR, Shelby ML, Chan N, Coleman MA, Frank M, Kuhl TL. All polymer microfluidic chips-A fixed target sample delivery workhorse for serial crystallography. BIOMICROFLUIDICS 2023; 17:051302. [PMID: 37840537 PMCID: PMC10576627 DOI: 10.1063/5.0167164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
The development of x-ray free electron laser (XFEL) light sources and serial crystallography methodologies has led to a revolution in protein crystallography, enabling the determination of previously unobtainable protein structures and near-atomic resolution of otherwise poorly diffracting protein crystals. However, to utilize XFEL sources efficiently demands the continuous, rapid delivery of a large number of difficult-to-handle microcrystals to the x-ray beam. A recently developed fixed-target system, in which crystals of interest are enclosed within a sample holder, which is rastered through the x-ray beam, is discussed in detail in this Perspective. The fixed target is easy to use, maintains sample hydration, and can be readily modified to allow a broad range of sample types and different beamline requirements. Recent innovations demonstrate the potential of such microfluidic-based fixed targets to be an all-around "workhorse" for serial crystallography measurements. This Perspective will summarize recent advancements in microfluidic fixed targets for serial crystallography, examine needs for future development, and guide users in designing, choosing, and utilizing a fixed-target sample delivery device for their system.
Collapse
Affiliation(s)
- Kevin K. Gu
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| | - Zhongrui Liu
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| | - Sankar Raju Narayanasamy
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Megan L. Shelby
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Nicholas Chan
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| | | | | | - Tonya L. Kuhl
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
5
|
Henkel A, Galchenkova M, Maracke J, Yefanov O, Klopprogge B, Hakanpää J, Mesters JR, Chapman HN, Oberthuer D. JINXED: just in time crystallization for easy structure determination of biological macromolecules. IUCRJ 2023; 10:253-260. [PMID: 36892542 PMCID: PMC10161778 DOI: 10.1107/s2052252523001653] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/23/2023] [Indexed: 05/06/2023]
Abstract
Macromolecular crystallography is a well established method in the field of structural biology and has led to the majority of known protein structures to date. After focusing on static structures, the method is now under development towards the investigation of protein dynamics through time-resolved methods. These experiments often require multiple handling steps of the sensitive protein crystals, e.g. for ligand-soaking and cryo-protection. These handling steps can cause significant crystal damage, and hence reduce data quality. Furthermore, in time-resolved experiments based on serial crystallography, which use micrometre-sized crystals for short diffusion times of ligands, certain crystal morphologies with small solvent channels can prevent sufficient ligand diffusion. Described here is a method that combines protein crystallization and data collection in a novel one-step process. Corresponding experiments were successfully performed as a proof-of-principle using hen egg-white lysozyme and crystallization times of only a few seconds. This method, called JINXED (Just IN time Crystallization for Easy structure Determination), promises high-quality data due to the avoidance of crystal handling and has the potential to enable time-resolved experiments with crystals containing small solvent channels by adding potential ligands to the crystallization buffer, simulating traditional co-crystallization approaches.
Collapse
Affiliation(s)
- Alessandra Henkel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Marina Galchenkova
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Julia Maracke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Bjarne Klopprogge
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Johanna Hakanpää
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Jeroen R. Mesters
- Institut für Biochemie, Universität zu Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Henry N. Chapman
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dominik Oberthuer
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| |
Collapse
|
6
|
Saha S, Özden C, Samkutty A, Russi S, Cohen A, Stratton MM, Perry SL. Polymer-based microfluidic device for on-chip counter-diffusive crystallization and in situ X-ray crystallography at room temperature. LAB ON A CHIP 2023; 23:2075-2090. [PMID: 36942575 PMCID: PMC10631519 DOI: 10.1039/d2lc01194h] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Proteins are long chains of amino acid residues that perform a myriad of functions in living organisms, including enzymatic reactions, signalling, and maintaining structural integrity. Protein function is determined directly by the protein structure. X-ray crystallography is the primary technique for determining the 3D structure of proteins, and facilitates understanding the effects of protein structure on function. The first step towards structure determination is crystallizing the protein of interest. We have developed a centrifugally-actuated microfluidic device that incorporates the fluid handling and metering necessary for protein crystallization. Liquid handling takes advantage of surface forces to control fluid flow and enable metering, without the need for any fluidic or pump connections. Our approach requires only the simple steps of pipetting the crystallization reagents into the device followed by either spinning or shaking to set up counter-diffusive protein crystallization trials. The use of thin, UV-curable polymers with a high level of X-ray transparency allows for in situ X-ray crystallography, eliminating the manual handling of fragile protein crystals and streamlining the process of protein structure analysis. We demonstrate the utility of our device using hen egg white lysozyme as a model system, followed by the crystallization and in situ, room temperature structural analysis of the hub domain of calcium-calmodulin dependent kinase II (CaMKIIβ).
Collapse
Affiliation(s)
- Sarthak Saha
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA.
| | - Can Özden
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA 01003, USA
| | - Alfred Samkutty
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA 01003, USA
| | - Silvia Russi
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aina Cohen
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Margaret M Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA 01003, USA
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA.
| |
Collapse
|
7
|
Vasireddi R, Gardais A, Chavas LMG. Manufacturing of Ultra-Thin X-ray-Compatible COC Microfluidic Devices for Optimal In Situ Macromolecular Crystallography Experiments. MICROMACHINES 2022; 13:1365. [PMID: 36014287 PMCID: PMC9416059 DOI: 10.3390/mi13081365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Cyclic-olefin-copolymer (COC)-based microfluidic devices are increasingly becoming the center of highly valuable research for in situ X-ray measurements due to their compatibility with X-rays, biological compounds, chemical resistance, optical properties, low cost, and simplified handling. COC microfluidic devices present potential solutions to challenging biological applications such as protein binding, folding, nucleation, growth kinetics, and structural changes. In recent years, the techniques applied to manufacturing and handling these devices have capitalized on enormous progress toward small-scale sample probing. Here, we describe the new and innovative design aspects, fabrication, and experimental implementation of low-cost and micron-sized X-ray-compatible microfluidic sample environments that address diffusion-based crystal formation for crystallographic characterization. The devices appear fully compatible with crystal growth and subsequent X-ray diffraction experiments, resulting in remarkably low background data recording. The results highlighted in this research demonstrate how the engineered microfluidic devices allow the recording of accurate crystallographic data at room temperature and structure determination at high resolution.
Collapse
Affiliation(s)
| | - Antonin Gardais
- Synchrotron SOLEIL, L’Orme des Merisier, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - Leonard M. G. Chavas
- Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan
- Synchrotron Radiation Research Center, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
8
|
Through Diffusion Measurements of Molecules to a Numerical Model for Protein Crystallization in Viscous Polyethylene Glycol Solution. CRYSTALS 2022. [DOI: 10.3390/cryst12070881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Protein crystallography has become a popular method for biochemists, but obtaining high-quality protein crystals for precise structural analysis and larger ones for neutron analysis requires further technical progress. Many studies have noted the importance of solvent viscosity for the probability of crystal nucleation and for mass transportation; therefore, in this paper, we have reported on experimental results and simulation studies regarding the use of viscous polyethylene glycol (PEG) solvents for protein crystals. We investigated the diffusion rates of proteins, peptides, and small molecules in viscous PEG solvents using fluorescence correlation spectroscopy. In high-molecular-weight PEG solutions (molecular weights: 10,000 and 20,000), solute diffusion showed deviations, with a faster diffusion than that estimated by the Stokes–Einstein equation. We showed that the extent of the deviation depends on the difference between the molecular sizes of the solute and PEG solvent, and succeeded in creating equations to predict diffusion coefficients in viscous PEG solutions. Using these equations, we have developed a new numerical model of 1D diffusion processes of proteins and precipitants in a counter-diffusion chamber during crystallization processes. Examples of the application of anomalous diffusion in counter-diffusion crystallization are shown by the growth of lysozyme crystals.
Collapse
|
9
|
Gilbile D, Shelby ML, Lyubimov AY, Wierman JL, Monteiro DCF, Cohen AE, Russi S, Coleman MA, Frank M, Kuhl TL. Plug-and-play polymer microfluidic chips for hydrated, room temperature, fixed-target serial crystallography. LAB ON A CHIP 2021; 21:4831-4845. [PMID: 34821226 PMCID: PMC8915944 DOI: 10.1039/d1lc00810b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The practice of serial X-ray crystallography (SX) depends on efficient, continuous delivery of hydrated protein crystals while minimizing background scattering. Of the two major types of sample delivery devices, fixed-target devices offer several advantages over widely adopted jet injectors, including: lower sample consumption, clog-free delivery, and the ability to control on-chip crystal density to improve hit rates. Here we present our development of versatile, inexpensive, and robust polymer microfluidic chips for routine and reliable room temperature serial measurements at both synchrotrons and X-ray free electron lasers (XFELs). Our design includes highly X-ray-transparent enclosing thin film layers tuned to minimize scatter background, adaptable sample flow layers tuned to match crystal size, and a large sample area compatible with both raster scanning and rotation based serial data collection. The optically transparent chips can be used both for in situ protein crystallization (to eliminate crystal handling) or crystal slurry loading, with prepared samples stable for weeks in a humidified environment and for several hours in ambient conditions. Serial oscillation crystallography, using a multi-crystal rotational data collection approach, at a microfocus synchrotron beamline (SSRL, beamline 12-1) was used to benchmark the performance of the chips. High-resolution structures (1.3-2.7 Å) were collected from five different proteins - hen egg white lysozyme, thaumatin, bovine liver catalase, concanavalin-A (type VI), and SARS-CoV-2 nonstructural protein NSP5. Overall, our modular fabrication approach enables precise control over the cross-section of materials in the X-ray beam path and facilitates chip adaption to different sample and beamline requirements for user-friendly, straightforward diffraction measurements at room temperature.
Collapse
Affiliation(s)
- Deepshika Gilbile
- Department of Chemical Engineering, University of California at Davis, Davis, CA 95616, USA.
| | - Megan L Shelby
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Artem Y Lyubimov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Diana C F Monteiro
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, New York 14203, USA
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Matthew A Coleman
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Matthias Frank
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Tonya L Kuhl
- Department of Chemical Engineering, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
10
|
Magalhães RP, Cunha JM, Sousa SF. Perspectives on the Role of Enzymatic Biocatalysis for the Degradation of Plastic PET. Int J Mol Sci 2021; 22:11257. [PMID: 34681915 PMCID: PMC8540959 DOI: 10.3390/ijms222011257] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/25/2022] Open
Abstract
Plastics are highly durable and widely used materials. Current methodologies of plastic degradation, elimination, and recycling are flawed. In recent years, biodegradation (the usage of microorganisms for material recycling) has grown as a valid alternative to previously used methods. The evolution of bioengineering techniques and the discovery of novel microorganisms and enzymes with degradation ability have been key. One of the most produced plastics is PET, a long chain polymer of terephthalic acid (TPA) and ethylene glycol (EG) repeating monomers. Many enzymes with PET degradation activity have been discovered, characterized, and engineered in the last few years. However, classification and integrated knowledge of these enzymes are not trivial. Therefore, in this work we present a summary of currently known PET degrading enzymes, focusing on their structural and activity characteristics, and summarizing engineering efforts to improve activity. Although several high potential enzymes have been discovered, further efforts to improve activity and thermal stability are necessary.
Collapse
Affiliation(s)
- Rita P. Magalhães
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM—Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (R.P.M.); (J.M.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Jorge M. Cunha
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM—Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (R.P.M.); (J.M.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Sérgio F. Sousa
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM—Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (R.P.M.); (J.M.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|
11
|
Roux A, Talon R, Alsalman Z, Engilberge S, D'Aléo A, Di Pietro S, Robin A, Bartocci A, Pilet G, Dumont E, Wagner T, Shima S, Riobé F, Girard E, Maury O. Influence of Divalent Cations in the Protein Crystallization Process Assisted by Lanthanide-Based Additives. Inorg Chem 2021; 60:15208-15214. [PMID: 34597021 DOI: 10.1021/acs.inorgchem.1c01635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of lanthanide complexes as powerful auxiliaries for biocrystallography prompted us to systematically analyze the influence of the commercial crystallization kit composition on the efficiency of two lanthanide additives: [Eu(DPA)3]3- and Tb-Xo4. This study reveals that the tris(dipicolinate) complex presents a lower chemical stability and a strong tendency toward false positives, which are detrimental for its use in a high-throughput robotized crystallization platform. In particular, the crystal structures of (Mg(H2O)6)3[Eu(DPA)3]2·7H2O (1), {(Ca(H2O)4)3[Eu(DPA)3]2}n·10nH2O (2), and {Cu(DPA)(H2O)2}n (3), resulting from spontaneous crystallization in the presence of a divalent alkaline-earth cation and transmetalation, are reported. On the other hand, Tb-Xo4 is perfectly soluble in the crystallization media, stable in the presence of alkaline-earth dications, and slowly decomposes (within days) by transmetalation with transition metals. The original structure of [Tb4L4(H2O)4]Cl4·15H2O (4) is also described, where L represents a bis(pinacolato)triazacyclononane ligand. This paper also highlights a potential synergy of interactions between Tb-Xo4 and components of the crystallization mixtures, leading to the formation of complex adducts like {AdkA/Tb-Xo4/Mg2+/glycerol} in the protein binding sites. The observation of such multicomponent adducts illustrated the complexity and versatility of the supramolecular chemistry occurring at the surface of the proteins.
Collapse
Affiliation(s)
- Amandine Roux
- Laboratoire de Chimie, ENS de Lyon, CNRS, UMR 5182, Université Lyon, Lyon F-69342, France.,Polyvalan, Lyon F-69342, France
| | - Romain Talon
- CEA, CNRS, IBS, Université Grenoble Alpes, Grenoble F-38000, France
| | - Zaynab Alsalman
- CEA, CNRS, IBS, Université Grenoble Alpes, Grenoble F-38000, France
| | | | - Anthony D'Aléo
- Laboratoire de Chimie, ENS de Lyon, CNRS, UMR 5182, Université Lyon, Lyon F-69342, France
| | - Sebastiano Di Pietro
- Laboratoire de Chimie, ENS de Lyon, CNRS, UMR 5182, Université Lyon, Lyon F-69342, France
| | - Adeline Robin
- CEA, CNRS, IBS, Université Grenoble Alpes, Grenoble F-38000, France
| | - Alessio Bartocci
- Laboratoire de Chimie, ENS de Lyon, CNRS, UMR 5182, Université Lyon, Lyon F-69342, France
| | - Guillaume Pilet
- CNRS UMR 5615, Université Lyon, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, Villeurbanne Cedex F-69622, France
| | - Elise Dumont
- Laboratoire de Chimie, ENS de Lyon, CNRS, UMR 5182, Université Lyon, Lyon F-69342, France.,Institut Universitaire de France, 1 rue Descartes, Paris 75005, France
| | - Tristan Wagner
- Microbial Protein Structure Group, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, Marburg D-35043, Germany.,Microbial Metabolism Group, Max Planck Institute for Marine Microbiology, 1-Celsiusstrasse, Bremen 35043, Germany
| | - Seigo Shima
- Microbial Protein Structure Group, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, Marburg D-35043, Germany
| | - François Riobé
- Laboratoire de Chimie, ENS de Lyon, CNRS, UMR 5182, Université Lyon, Lyon F-69342, France
| | - Eric Girard
- CEA, CNRS, IBS, Université Grenoble Alpes, Grenoble F-38000, France
| | - Olivier Maury
- Laboratoire de Chimie, ENS de Lyon, CNRS, UMR 5182, Université Lyon, Lyon F-69342, France
| |
Collapse
|
12
|
Protein Crystallization in a Microfluidic Contactor with Nafion ®117 Membranes. MEMBRANES 2021; 11:membranes11080549. [PMID: 34436312 PMCID: PMC8398885 DOI: 10.3390/membranes11080549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022]
Abstract
Protein crystallization still remains mostly an empirical science, as the production of crystals with the required quality for X-ray analysis is dependent on the intensive screening of the best protein crystallization and crystal’s derivatization conditions. Herein, this demanding step was addressed by the development of a high-throughput and low-budget microfluidic platform consisting of an ion exchange membrane (117 Nafion® membrane) sandwiched between a channel layer (stripping phase compartment) and a wells layer (feed phase compartment) forming 75 independent micro-contactors. This microfluidic device allows for a simultaneous and independent screening of multiple protein crystallization and crystal derivatization conditions, using Hen Egg White Lysozyme (HEWL) as the model protein and Hg2+ as the derivatizing agent. This microdevice offers well-regulated crystallization and subsequent crystal derivatization processes based on the controlled transport of water and ions provided by the 117 Nafion® membrane. Diffusion coefficients of water and the derivatizing agent (Hg2+) were evaluated, showing the positive influence of the protein drop volume on the number of crystals and crystal size. This microfluidic system allowed for crystals with good structural stability and high X-ray diffraction quality and, thus, it is regarded as an efficient tool that may contribute to the enhancement of the proteins’ crystals structural resolution.
Collapse
|
13
|
Fernández-Penas R, Verdugo-Escamilla C, Martínez-Rodríguez S, Gavira JA. Production of Cross-Linked Lipase Crystals at a Preparative Scale. CRYSTAL GROWTH & DESIGN 2021; 21:1698-1707. [PMID: 34602865 PMCID: PMC8479976 DOI: 10.1021/acs.cgd.0c01608] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/10/2021] [Indexed: 05/14/2023]
Abstract
The autoimmobilization of enzymes via cross-linked enzyme crystals (CLECs) has regained interest in recent years, boosted by the extensive knowledge gained in protein crystallization, the decrease of cost and laboriousness of the process, and the development of potential applications. In this work, we present the crystallization and preparative-scale production of reinforced cross-linked lipase crystals (RCLLCs) using a commercial detergent additive as a raw material. Bulk crystallization was carried out in 500 mL of agarose media using the batch technique. Agarose facilitates the homogeneous production of crystals, their cross-linking treatment, and their extraction. RCLLCs were active in an aqueous solution and in hexane, as shown by the hydrolysis of p-nitrophenol butyrate and α-methylbenzyl acetate, respectively. RCLLCs presented both high thermal and robust operational stability, allowing the preparation of a packed-bed chromatographic column to work in a continuous flow. Finally, we determined the three-dimensional (3D) models of this commercial lipase crystallized with and without phosphate at 2.0 and 1.7 Å resolutions, respectively.
Collapse
Affiliation(s)
- Raquel Fernández-Penas
- Laboratorio
de Estudios Cristalográficos, Instituto Andaluz de Ciencias
de la Tierra, Consejo Superior de Investigaciones
Científicas-Universidad de Granada, Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Cristóbal Verdugo-Escamilla
- Laboratorio
de Estudios Cristalográficos, Instituto Andaluz de Ciencias
de la Tierra, Consejo Superior de Investigaciones
Científicas-Universidad de Granada, Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Sergio Martínez-Rodríguez
- Laboratorio
de Estudios Cristalográficos, Instituto Andaluz de Ciencias
de la Tierra, Consejo Superior de Investigaciones
Científicas-Universidad de Granada, Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
- Departamento
de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Avenida de la Investigación 11, 18071 Granada, Spain
| | - José A. Gavira
- Laboratorio
de Estudios Cristalográficos, Instituto Andaluz de Ciencias
de la Tierra, Consejo Superior de Investigaciones
Científicas-Universidad de Granada, Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
| |
Collapse
|
14
|
Ramberg KO, Engilberge S, Skorek T, Crowley PB. Facile Fabrication of Protein-Macrocycle Frameworks. J Am Chem Soc 2021; 143:1896-1907. [PMID: 33470808 PMCID: PMC8154523 DOI: 10.1021/jacs.0c10697] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Precisely defined protein aggregates,
as exemplified by crystals,
have applications in functional materials. Consequently, engineered
protein assembly is a rapidly growing field. Anionic calix[n]arenes
are useful scaffolds that can mold to cationic proteins and induce
oligomerization and assembly. Here, we describe protein-calixarene
composites obtained via cocrystallization of commercially available
sulfonato-calix[8]arene (sclx8) with the symmetric and “neutral” protein RSL. Cocrystallization
occurred across a wide range of conditions and protein charge states,
from pH 2.2–9.5, resulting in three crystal forms. Cationization
of the protein surface at pH ∼ 4 drives calixarene complexation
and yielded two types of porous frameworks with pore diameters >3
nm. Both types of framework provide evidence of protein encapsulation
by the calixarene. Calixarene-masked proteins act as nodes within
the frameworks, displaying octahedral-type coordination in one case.
The other framework formed millimeter-scale crystals within hours,
without the need for precipitants or specialized equipment. NMR experiments
revealed macrocycle-modulated side chain pKa values and suggested a mechanism for pH-triggered assembly.
The same low pH framework was generated at high pH with a permanently
cationic arginine-enriched RSL variant. Finally, in addition to protein
framework fabrication, sclx8 enables de novo structure determination.
Collapse
Affiliation(s)
- Kiefer O Ramberg
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Sylvain Engilberge
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.,Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Tomasz Skorek
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Peter B Crowley
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
15
|
Abstract
X-ray crystallography enables detailed structural studies of proteins to understand and modulate their function. Conducting crystallographic experiments at cryogenic temperatures has practical benefits but potentially limits the identification of functionally important alternative protein conformations that can be revealed only at room temperature (RT). This review discusses practical aspects of preparing, acquiring, and analyzing X-ray crystallography data at RT to demystify preconceived impracticalities that freeze progress of routine RT data collection at synchrotron sources. Examples are presented as conceptual and experimental templates to enable the design of RT-inspired studies; they illustrate the diversity and utility of gaining novel insights into protein conformational landscapes. An integrative view of protein conformational dynamics enables opportunities to advance basic and biomedical research.
Collapse
|
16
|
Darwish AMG, Abo Nahas HH, Korra YH, Osman AA, El-Kholy WM, Reyes-Córdova M, Saied EM, Abdel-Azeem AM. Fungal Lipases: Insights into Molecular Structures and Biotechnological Applications in Medicine and Dairy Industry. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Pearson AR, Mehrabi P. Serial synchrotron crystallography for time-resolved structural biology. Curr Opin Struct Biol 2020; 65:168-174. [PMID: 32846363 DOI: 10.1016/j.sbi.2020.06.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 10/23/2022]
Abstract
The current state-of-the-art experiments in time-resolved structural biology are undoubtedly the recent extremely impressive results that are emerging from XFEL-based experiments. However, there is a large range of macromolecular systems where the biological interest is predominantly in the slower dynamics (μs-s), that produce well diffracting microcrystals, and for which synchrotron-based experiments are extremely well suited. The combination of microfocus X-ray beams and the development of a range of sample delivery platforms has now made routine millisecond time-resolved experiments at microfocus macromolecular crystallography beamlines a real possibility and is driving development of dedicated endstations for time-resolved serial synchrotron crystallography.
Collapse
Affiliation(s)
- Arwen R Pearson
- Institute for Nanostructure and Solid State Physics, Hamburg Centre for Ultrafast Imaging, Universität Hamburg, CFEL, Luruper Chaussee 149, Hamburg 22761, Germany.
| | - Pedram Mehrabi
- Max Planck Institute for the Structure and Dynamics of Matter, CFEL, Luruper Chaussee 149, Hamburg 22761, Germany
| |
Collapse
|
18
|
Gavira JA, Rodriguez-Ruiz I, Martinez-Rodriguez S, Basu S, Teychené S, McCarthy AA, Mueller-Dieckman C. Attaining atomic resolution from in situ data collection at room temperature using counter-diffusion-based low-cost microchips. Acta Crystallogr D Struct Biol 2020; 76:751-758. [PMID: 32744257 DOI: 10.1107/s2059798320008475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Sample handling and manipulation for cryoprotection currently remain critical factors in X-ray structural determination. While several microchips for macromolecular crystallization have been proposed during the last two decades to partially overcome crystal-manipulation issues, increased background noise originating from the scattering of chip-fabrication materials has so far limited the attainable resolution of diffraction data. Here, the conception and use of low-cost, X-ray-transparent microchips for in situ crystallization and direct data collection, and structure determination at atomic resolution close to 1.0 Å, is presented. The chips are fabricated by a combination of either OSTEMER and Kapton or OSTEMER and Mylar materials for the implementation of counter-diffusion crystallization experiments. Both materials produce a sufficiently low scattering background to permit atomic resolution diffraction data collection at room temperature and the generation of 3D structural models of the tested model proteins lysozyme, thaumatin and glucose isomerase. Although the high symmetry of the three model protein crystals produced almost complete data sets at high resolution, the potential of in-line data merging and scaling of the multiple crystals grown along the microfluidic channels is also presented and discussed.
Collapse
Affiliation(s)
- Jose A Gavira
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Avenida Las Palmeras 4, 18100 Armilla, Spain
| | - Isaac Rodriguez-Ruiz
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, INSA, UPS Toulouse, Toulouse, France
| | - Sergio Martinez-Rodriguez
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Avenida Las Palmeras 4, 18100 Armilla, Spain
| | - Shibom Basu
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Sébastien Teychené
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, INSA, UPS Toulouse, Toulouse, France
| | - Andrew A McCarthy
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | | |
Collapse
|
19
|
Spruit CM, Wicklund A, Wan X, Skurnik M, Pajunen MI. Discovery of Three Toxic Proteins of Klebsiella Phage fHe-Kpn01. Viruses 2020; 12:E544. [PMID: 32429141 PMCID: PMC7291057 DOI: 10.3390/v12050544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/09/2023] Open
Abstract
The lytic phage, fHe-Kpn01 was isolated from sewage water using an extended-spectrum beta-lactamase-producing strain of Klebsiella pneumoniae as a host. The genome is 43,329 bp in size and contains direct terminal repeats of 222 bp. The genome contains 56 predicted genes, of which proteomics analysis detected 29 different proteins in purified phage particles. Comparison of fHe-Kpn01 to other phages, both morphologically and genetically, indicated that the phage belongs to the family Podoviridae and genus Drulisvirus. Because fHe-Kpn01 is strictly lytic and does not carry any known resistance or virulence genes, it is suitable for phage therapy. It has, however, a narrow host range since it infected only three of the 72 tested K. pneumoniae strains, two of which were of capsule type KL62. After annotation of the predicted genes based on the similarity to genes of known function and proteomics results on the virion-associated proteins, 22 gene products remained annotated as hypothetical proteins of unknown function (HPUF). These fHe-Kpn01 HPUFs were screened for their toxicity in Escherichia coli. Three of the HPUFs, encoded by the genes g10, g22, and g38, were confirmed to be toxic.
Collapse
Affiliation(s)
- Cindy M. Spruit
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (C.M.S.); (A.W.); (X.W.); (M.S.)
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Anu Wicklund
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (C.M.S.); (A.W.); (X.W.); (M.S.)
- Division of Clinical Microbiology, HUSLAB, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Xing Wan
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (C.M.S.); (A.W.); (X.W.); (M.S.)
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00790 Helsinki, Finland
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (C.M.S.); (A.W.); (X.W.); (M.S.)
- Division of Clinical Microbiology, HUSLAB, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Maria I. Pajunen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (C.M.S.); (A.W.); (X.W.); (M.S.)
| |
Collapse
|