1
|
Kurta RP, van Driel TB, Dohn AO, Berberich TB, Nelson S, Zaluzhnyy IA, Mukharamova N, Lapkin D, Zederkof DB, Seaberg M, Pedersen KS, Kjær KS, Rippy GI, Biasin E, Møller KB, Gelisio L, Haldrup K, Vartanyants IA, Nielsen MM. Exploring fingerprints of ultrafast structural dynamics in molecular solutions with an X-ray laser. Phys Chem Chem Phys 2023; 25:23417-23434. [PMID: 37486006 DOI: 10.1039/d3cp01257c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
We apply ultrashort X-ray laser pulses to track optically excited structural dynamics of [Ir2(dimen)4]2+ molecules in solution. In our exploratory study we determine angular correlations in the scattered X-rays, which comprise a complex fingerprint of the ultrafast dynamics. Model-assisted analysis of the experimental correlation data allows us to elucidate various aspects of the photoinduced changes in the excited molecular ensembles. We unambiguously identify that in our experiment the photoinduced transition dipole moments in [Ir2(dimen)4]2+ molecules are oriented perpendicular to the Ir-Ir bond. The analysis also shows that the ground state conformer of [Ir2(dimen)4]2+ with a larger Ir-Ir distance is mostly responsible for the formation of the excited state. We also reveal that the ensemble of solute molecules can be characterized with a substantial structural heterogeneity due to solvent influence. The proposed X-ray correlation approach offers an alternative path for studies of ultrafast structural dynamics of molecular ensembles in the liquid and gas phases.
Collapse
Affiliation(s)
- Ruslan P Kurta
- European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany.
| | - Tim B van Driel
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Asmus O Dohn
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Lyngby, Denmark.
- Science Institute and Faculty of Physical Sciences, University of Iceland VR-III, 107 Reykjavík, Iceland
| | | | - Silke Nelson
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ivan A Zaluzhnyy
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | | | - Dmitry Lapkin
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Diana B Zederkof
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Lyngby, Denmark.
| | - Matthew Seaberg
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Kasper S Pedersen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Lyngby, Denmark
| | - Kasper S Kjær
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Geoffery Ian Rippy
- Department of Materials Science and Engineering, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Klaus B Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Lyngby, Denmark
| | - Luca Gelisio
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Kristoffer Haldrup
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Lyngby, Denmark.
| | - Ivan A Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Martin M Nielsen
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Lyngby, Denmark.
| |
Collapse
|
2
|
Binns J, Darmanin C, Kewish CM, Pathirannahalge SK, Berntsen P, Adams PLR, Paporakis S, Wells D, Roque FG, Abbey B, Bryant G, Conn CE, Mudie ST, Hawley AM, Ryan TM, Greaves TL, Martin AV. Preferred orientation and its effects on intensity-correlation measurements. IUCRJ 2022; 9:231-242. [PMID: 35371507 PMCID: PMC8895024 DOI: 10.1107/s2052252521012422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Intensity-correlation measurements allow access to nanostructural information on a range of ordered and disordered materials beyond traditional pair-correlation methods. In real space, this information can be expressed in terms of a pair-angle distribution function (PADF) which encodes three- and four-body distances and angles. To date, correlation-based techniques have not been applied to the analysis of microstructural effects, such as preferred orientation, which are typically investigated by texture analysis. Preferred orientation is regarded as a potential source of error in intensity-correlation experiments and complicates interpretation of the results. Here, the theory of preferred orientation in intensity-correlation techniques is developed, connecting it to the established theory of texture analysis. The preferred-orientation effect is found to scale with the number of crystalline domains in the beam, surpassing the nanostructural signal when the number of domains becomes large. Experimental demonstrations are presented of the orientation-dominant and nanostructure-dominant cases using PADF analysis. The results show that even minor deviations from uniform orientation produce the strongest angular correlation signals when the number of crystalline domains in the beam is large.
Collapse
Affiliation(s)
- Jack Binns
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Connie Darmanin
- ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria 3086, Australia
| | - Cameron M. Kewish
- Australian Nuclear Science and Technology Organisation, Australian Synchrotron, Victoria 3168, Australia
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| | | | - Peter Berntsen
- ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria 3086, Australia
| | | | - Stefan Paporakis
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Daniel Wells
- ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria 3086, Australia
| | - Francisco Gian Roque
- ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria 3086, Australia
| | - Brian Abbey
- ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria 3086, Australia
| | - Gary Bryant
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Charlotte E. Conn
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Stephen T. Mudie
- Australian Nuclear Science and Technology Organisation, Australian Synchrotron, Victoria 3168, Australia
| | - Adrian M. Hawley
- Australian Nuclear Science and Technology Organisation, Australian Synchrotron, Victoria 3168, Australia
| | - Timothy M. Ryan
- Australian Nuclear Science and Technology Organisation, Australian Synchrotron, Victoria 3168, Australia
| | - Tamar L. Greaves
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Andrew V. Martin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
3
|
Cross-correlation analysis of X-ray photon correlation spectroscopy to extract rotational diffusion coefficients. Proc Natl Acad Sci U S A 2021; 118:2105826118. [PMID: 34408023 PMCID: PMC8403868 DOI: 10.1073/pnas.2105826118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
X-ray photon correlation spectroscopy (XPCS) is a powerful technique that can probe a broad range of space and time scales and will become increasingly powerful due to coming advancements in coherence. Assessing translational and rotational diffusion is a key quantity in analyzing material structures and dynamics, with applications across molecular biology, drug discovery, and materials science. While methods for estimating translational diffusion coefficients from XPCS data are well-developed, there are no algorithms for measuring the rotational diffusion. Here, we present a mathematical formulation and algorithm based on angular-temporal cross-correlations for extracting this rotational information, providing tools for data analysis of XPCS. Although we focus on XPCS, the proposed method can be applied to other experimental techniques due to its generality. Coefficients for translational and rotational diffusion characterize the Brownian motion of particles. Emerging X-ray photon correlation spectroscopy (XPCS) experiments probe a broad range of length scales and time scales and are well-suited for investigation of Brownian motion. While methods for estimating the translational diffusion coefficients from XPCS are well-developed, there are no algorithms for measuring the rotational diffusion coefficients based on XPCS, even though the required raw data are accessible from such experiments. In this paper, we propose angular-temporal cross-correlation analysis of XPCS data and show that this information can be used to design a numerical algorithm (Multi-Tiered Estimation for Correlation Spectroscopy [MTECS]) for predicting the rotational diffusion coefficient utilizing the cross-correlation: This approach is applicable to other wavelengths beyond this regime. We verify the accuracy of this algorithmic approach across a range of simulated data.
Collapse
|
4
|
Angular X-Ray Cross-Correlation Analysis (AXCCA): Basic Concepts and Recent Applications to Soft Matter and Nanomaterials. MATERIALS 2019; 12:ma12213464. [PMID: 31652689 PMCID: PMC6862311 DOI: 10.3390/ma12213464] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 01/25/2023]
Abstract
Angular X-ray cross-correlation analysis (AXCCA) is a technique which allows quantitative measurement of the angular anisotropy of X-ray diffraction patterns and provides insights into the orientational order in the system under investigation. This method is based on the evaluation of the angular cross-correlation function of the scattered intensity distribution on a two-dimensional (2D) detector and further averaging over many diffraction patterns for enhancement of the anisotropic signal. Over the last decade, AXCCA was successfully used to study the anisotropy in various soft matter systems, such as solutions of anisotropic particles, liquid crystals, colloidal crystals, superlattices composed by nanoparticles, etc. This review provides an introduction to the technique and gives a survey of the recent experimental work in which AXCCA in combination with micro- or nanofocused X-ray microscopy was used to study the orientational order in various soft matter systems.
Collapse
|