1
|
Szwabowski GL, Griffing M, Mugabe EJ, O’Malley D, Baker LN, Baker DL, Parrill AL. G Protein-Coupled Receptor-Ligand Pose and Functional Class Prediction. Int J Mol Sci 2024; 25:6876. [PMID: 38999982 PMCID: PMC11241240 DOI: 10.3390/ijms25136876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
G protein-coupled receptor (GPCR) transmembrane protein family members play essential roles in physiology. Numerous pharmaceuticals target GPCRs, and many drug discovery programs utilize virtual screening (VS) against GPCR targets. Improvements in the accuracy of predicting new molecules that bind to and either activate or inhibit GPCR function would accelerate such drug discovery programs. This work addresses two significant research questions. First, do ligand interaction fingerprints provide a substantial advantage over automated methods of binding site selection for classical docking? Second, can the functional status of prospective screening candidates be predicted from ligand interaction fingerprints using a random forest classifier? Ligand interaction fingerprints were found to offer modest advantages in sampling accurate poses, but no substantial advantage in the final set of top-ranked poses after scoring, and, thus, were not used in the generation of the ligand-receptor complexes used to train and test the random forest classifier. A binary classifier which treated agonists, antagonists, and inverse agonists as active and all other ligands as inactive proved highly effective in ligand function prediction in an external test set of GPR31 and TAAR2 candidate ligands with a hit rate of 82.6% actual actives within the set of predicted actives.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel L. Baker
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA; (G.L.S.); (M.G.); (E.J.M.); (D.O.); (L.N.B.)
| | - Abby L. Parrill
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA; (G.L.S.); (M.G.); (E.J.M.); (D.O.); (L.N.B.)
| |
Collapse
|
2
|
Tzortzini E, Corey RA, Kolocouris A. Comparative Study of Receptor-, Receptor State-, and Membrane-Dependent Cholesterol Binding Sites in A 2A and A 1 Adenosine Receptors Using Coarse-Grained Molecular Dynamics Simulations. J Chem Inf Model 2023; 63:928-949. [PMID: 36637988 DOI: 10.1021/acs.jcim.2c01181] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We used coarse-grained molecular dynamics (CG MD) simulations to study protein-cholesterol interactions for different activation states of the A2A adenosine receptor (A2AR) and the A1 adenosine receptor (A1R) and predict new cholesterol binding sites indicating amino acid residues with a high residence time in three biologically relevant membranes. Compared to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-cholesterol and POPC-phosphatidylinositol-bisphosphate (PIP2)-cholesterol, the plasma mimetic membrane best described the cholesterol binding sites previously detected for the inactive state of A2AR and revealed the binding sites with long-lasting amino acid residues. We observed that using the plasma mimetic membrane and plotting residues with cholesterol residence time ≥2 μs, our CG MD simulations captured most obviously the cholesterol-protein interactions. For the inactive A2AR, we identified one more binding site in which cholesterol is bound to residues with a long residence time compared to the previously detected, for the active A1R, three binding sites, and for the inactive A1R, two binding sites. We calculated that for the active states, cholesterol binds to residues with a much longer residence time compared to the inactive state for both A2AR and A1R. The stability of the identified binding sites to A1R or A2AR with CG MD simulations was additionally investigated with potential of mean force calculations using umbrella sampling. We observed that the binding sites with residues to which cholesterol has a long residence time in A2AR have shallow binding free energy minima compared to the related binding sites in A1R, suggesting a stronger binding for cholesterol to A1R. The differences in binding sites in which cholesterol is stabilized and interacts with residues with a long residence time between active and inactive states of A1R and A2AR can be important for differences in functional activity and orthosteric agonist or antagonist affinity and can be used for the design of allosteric modulators, which can bind through lipid pathways. We observed a stronger binding for cholesterol to A1R (i.e., generally higher association rates) compared to A2AR, which remains to be demonstrated. For the active states, cholesterol binds to residues with much longer residence times compared to the inactive state for both A2AR and A1R. Taken together, binding sites of active A1R may be considered as promising allosteric targets.
Collapse
Affiliation(s)
- Efpraxia Tzortzini
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771Athens, Greece
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771Athens, Greece
| |
Collapse
|
3
|
Han R, Yoon H, Yoo J, Lee Y. Systematic analyses of the sequence conservation and ligand interaction patterns of purinergic P1 and P2Y receptors provide a structural basis for receptor selectivity. Comput Struct Biotechnol J 2023; 21:889-898. [PMID: 36698973 PMCID: PMC9860165 DOI: 10.1016/j.csbj.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
Purinergic receptors are membrane proteins that regulate numerous cellular functions by catalyzing reactions involving purine nucleotides or nucleosides. Among the three receptor families, i.e., P1, P2X, and P2Y, the P1 and P2Y receptors share common structural features of class A GPCR. Comprehensive sequence and structural analysis revealed that the P1 and P2Y receptors belong to two distinct groups. They exhibit different ligand-binding site features that can distinguish between specific activators. These specific amino acid residues in the binding cavity may be involved in the selectivity and unique pharmacological behavior of each subtype. In this study, we conducted a structure-based analysis of purinergic P1 and P2Y receptors to identify their evolutionary signature and obtain structural insights into ligand recognition and selectivity. The structural features of the P1 and P2Y receptor classes were compared based on sequence conservation and ligand interaction patterns. Orthologous protein sequences were collected for the P1 and P2Y receptors, and sequence conservation was calculated based on Shannon entropy to identify highly conserved residues. To analyze the ligand interaction patterns, we performed docking studies on the P1 and P2Y receptors using known ligand information extracted from the ChEMBL database. We analyzed how the conserved residues are related to ligand-binding sites and how the key interacting residues differ between P1 and P2Y receptors, or between agonists and antagonists. We extracted new similarities and differences between the receptor subtypes, and the results can be used for designing new ligands by predicting hotspot residues that are important for functional selectivity.
Collapse
|
4
|
Sonker M, Doppler D, Egatz-Gomez A, Zaare S, Rabbani MT, Manna A, Cruz Villarreal J, Nelson G, Ketawala GK, Karpos K, Alvarez RC, Nazari R, Thifault D, Jernigan R, Oberthür D, Han H, Sierra R, Hunter MS, Batyuk A, Kupitz CJ, Sublett RE, Poitevin F, Lisova S, Mariani V, Tolstikova A, Boutet S, Messerschmidt M, Meza-Aguilar JD, Fromme R, Martin-Garcia JM, Botha S, Fromme P, Grant TD, Kirian RA, Ros A. Electrically stimulated droplet injector for reduced sample consumption in serial crystallography. BIOPHYSICAL REPORTS 2022; 2:100081. [PMID: 36425668 PMCID: PMC9680787 DOI: 10.1016/j.bpr.2022.100081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
With advances in X-ray free-electron lasers (XFELs), serial femtosecond crystallography (SFX) has enabled the static and dynamic structure determination for challenging proteins such as membrane protein complexes. In SFX with XFELs, the crystals are typically destroyed after interacting with a single XFEL pulse. Therefore, thousands of new crystals must be sequentially introduced into the X-ray beam to collect full data sets. Because of the serial nature of any SFX experiment, up to 99% of the sample delivered to the X-ray beam during its "off-time" between X-ray pulses is wasted due to the intrinsic pulsed nature of all current XFELs. To solve this major problem of large and often limiting sample consumption, we report on improvements of a revolutionary sample-saving method that is compatible with all current XFELs. We previously reported 3D-printed injection devices coupled with gas dynamic virtual nozzles (GDVNs) capable of generating samples containing droplets segmented by an immiscible oil phase for jetting crystal-laden droplets into the path of an XFEL. Here, we have further improved the device design by including metal electrodes inducing electrowetting effects for improved control over droplet generation frequency to stimulate the droplet release to matching the XFEL repetition rate by employing an electrical feedback mechanism. We report the improvements in this electrically triggered segmented flow approach for sample conservation in comparison with a continuous GDVN injection using the microcrystals of lysozyme and 3-deoxy-D-manno-octulosonate 8-phosphate synthase and report the segmented flow approach for sample injection applied at the Macromolecular Femtosecond Crystallography instrument at the Linear Coherent Light Source for the first time.
Collapse
Affiliation(s)
- Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Diandra Doppler
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Sahba Zaare
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Mohammad T. Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Abhik Manna
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Jorvani Cruz Villarreal
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Garrett Nelson
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Gihan K. Ketawala
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Konstantinos Karpos
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Roberto C. Alvarez
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Reza Nazari
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Darren Thifault
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Rebecca Jernigan
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Dominik Oberthür
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | | | - Raymond Sierra
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Mark S. Hunter
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Alexander Batyuk
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Christopher J. Kupitz
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Robert E. Sublett
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Frederic Poitevin
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Stella Lisova
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Valerio Mariani
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Alexandra Tolstikova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - Sebastien Boutet
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Marc Messerschmidt
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - J. Domingo Meza-Aguilar
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Raimund Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Jose M. Martin-Garcia
- Institute Physical-Chemistry Rocasolano, Spanish National Research Council, Madrid, Spain
| | - Sabine Botha
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Thomas D. Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, Buffalo, New York
| | - Richard A. Kirian
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| |
Collapse
|
5
|
Shiriaeva A, Park D, Kim G, Lee Y, Hou X, Jarhad DB, Kim G, Yu J, Hyun YE, Kim W, Gao ZG, Jacobson KA, Han GW, Stevens RC, Jeong LS, Choi S, Cherezov V. GPCR Agonist-to-Antagonist Conversion: Enabling the Design of Nucleoside Functional Switches for the A 2A Adenosine Receptor. J Med Chem 2022; 65:11648-11657. [PMID: 35977382 PMCID: PMC9469204 DOI: 10.1021/acs.jmedchem.2c00462] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 01/03/2023]
Abstract
Modulators of the G protein-coupled A2A adenosine receptor (A2AAR) have been considered promising agents to treat Parkinson's disease, inflammation, cancer, and central nervous system disorders. Herein, we demonstrate that a thiophene modification at the C8 position in the common adenine scaffold converted an A2AAR agonist into an antagonist. We synthesized and characterized a novel A2AAR antagonist, 2 (LJ-4517), with Ki = 18.3 nM. X-ray crystallographic structures of 2 in complex with two thermostabilized A2AAR constructs were solved at 2.05 and 2.80 Å resolutions. In contrast to A2AAR agonists, which simultaneously interact with both Ser2777.42 and His2787.43, 2 only transiently contacts His2787.43, which can be direct or water-mediated. The n-hexynyl group of 2 extends into an A2AAR exosite. Structural analysis revealed that the introduced thiophene modification restricted receptor conformational rearrangements required for subsequent activation. This approach can expand the repertoire of adenosine receptor antagonists that can be designed based on available agonist scaffolds.
Collapse
Affiliation(s)
- Anna Shiriaeva
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Bridge
Institute, University
of Southern California, Los Angeles, California 90089, United States
| | - Daejin Park
- Department
of Pharmacology, Kosin University College
of Medicine, Busan 49267, Republic of Korea
| | - Gyudong Kim
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic
of Korea
- College
of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yoonji Lee
- College
of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Xiyan Hou
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic
of Korea
| | - Dnyandev B. Jarhad
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic
of Korea
| | - Gibae Kim
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic
of Korea
| | - Jinha Yu
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic
of Korea
| | - Young Eum Hyun
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic
of Korea
| | - Woomi Kim
- Department
of Pharmacology, Kosin University College
of Medicine, Busan 49267, Republic of Korea
| | - Zhan-Guo Gao
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Disease, National Institutes
of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United
States
| | - Kenneth A. Jacobson
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Disease, National Institutes
of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United
States
| | - Gye Won Han
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Bridge
Institute, University
of Southern California, Los Angeles, California 90089, United States
| | - Raymond C. Stevens
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Bridge
Institute, University
of Southern California, Los Angeles, California 90089, United States
- Structure
Therapeutics, 701 Gateway
Blvd, South San Francisco, California 94080, United States
| | - Lak Shin Jeong
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic
of Korea
| | - Sun Choi
- Global
AI Drug Discovery Center, College of Pharmacy and Graduate School
of Pharmaceutical Sciences, Ewha Womans
University, Seoul 03760, Republic of Korea
| | - Vadim Cherezov
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Bridge
Institute, University
of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
6
|
Berntsen P, Darmanin C, Balaur E, Flueckiger L, Kozlov A, Roque FG, Adams P, Binns J, Wells D, Hadian Jazi M, Saha S, Hawley A, Ryan T, Mudie S, Kirby N, Abbey B, Martin AV. Stability, flow alignment and a phase transition of the lipidic cubic phase during continuous flow injection. J Colloid Interface Sci 2022; 611:588-598. [PMID: 34973655 DOI: 10.1016/j.jcis.2021.12.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
Continuous flow injection is a key technology for serial crystallography measurements of protein crystals suspended in the lipidic cubic phase (LCP). To date, there has been little discussion in the literature regarding the impact of the injection process itself on the structure of the lipidic phase. This is despite the fact that the phase of the injection matrix is critical for the flow properties of the stream and potentially for sample stability. Here we report small-angle X-ray scattering measurements of a monoolein:water mixture during continuous delivery using a high viscosity injector. We observe both an alignment and modification of the LCP as a direct result of the injection process. The orientation of the cubic lattice with respect to the beam was estimated based on the anisotropy of the diffraction pattern and does not correspond to a single low order zone axis. The solvent fraction was also observed to impact the stability of the cubic phase during injection. In addition, depending on the distance traveled by the lipid after exiting the needle, the phase is observed to transition from a pure diamond phase (Pn3m) to a mixture containing both gyriod (Ia3d) and lamellar (Lα) phases. Finite element modelling of the observed phase behaviour during injection indicates that the pressure exerted on the lipid stream during extrusion accounts for the variations in the phase composition of the monoolein:water mixture.
Collapse
Affiliation(s)
- Peter Berntsen
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia
| | - Connie Darmanin
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia.
| | - Eugeniu Balaur
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia
| | - Leonie Flueckiger
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia
| | - Alex Kozlov
- ARC Centre of Excellence for Advanced Molecular Imaging, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Francisco G Roque
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia
| | - Patrick Adams
- School of Science, RMIT University, Melbourne 3000 Australia
| | - Jack Binns
- School of Science, RMIT University, Melbourne 3000 Australia
| | - Daniel Wells
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia
| | - Marjan Hadian Jazi
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia
| | - Saumitra Saha
- ARC Centre of Excellence for Advanced Molecular Imaging, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Adrian Hawley
- The Australian Nuclear Science Technology Organisation, The Australian Synchrotron, Clayton, Vic, Australia
| | - Tim Ryan
- The Australian Nuclear Science Technology Organisation, The Australian Synchrotron, Clayton, Vic, Australia
| | - Stephen Mudie
- The Australian Nuclear Science Technology Organisation, The Australian Synchrotron, Clayton, Vic, Australia
| | - Nigel Kirby
- The Australian Nuclear Science Technology Organisation, The Australian Synchrotron, Clayton, Vic, Australia
| | - Brian Abbey
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia
| | - Andrew V Martin
- School of Science, RMIT University, Melbourne 3000 Australia.
| |
Collapse
|
7
|
Wang J, Bhattarai A, Do HN, Akhter S, Miao Y. Molecular Simulations and Drug Discovery of Adenosine Receptors. Molecules 2022; 27:2054. [PMID: 35408454 PMCID: PMC9000248 DOI: 10.3390/molecules27072054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/02/2023] Open
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of human membrane proteins. Four subtypes of adenosine receptors (ARs), the A1AR, A2AAR, A2BAR and A3AR, each with a unique pharmacological profile and distribution within the tissues in the human body, mediate many physiological functions and serve as critical drug targets for treating numerous human diseases including cancer, neuropathic pain, cardiac ischemia, stroke and diabetes. The A1AR and A3AR preferentially couple to the Gi/o proteins, while the A2AAR and A2BAR prefer coupling to the Gs proteins. Adenosine receptors were the first subclass of GPCRs that had experimental structures determined in complex with distinct G proteins. Here, we will review recent studies in molecular simulations and computer-aided drug discovery of the adenosine receptors and also highlight their future research opportunities.
Collapse
Affiliation(s)
| | | | | | | | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA; (J.W.); (A.B.); (H.N.D.); (S.A.)
| |
Collapse
|
8
|
Nass K, Bacellar C, Cirelli C, Dworkowski F, Gevorkov Y, James D, Johnson PJM, Kekilli D, Knopp G, Martiel I, Ozerov D, Tolstikova A, Vera L, Weinert T, Yefanov O, Standfuss J, Reiche S, Milne CJ. Pink-beam serial femtosecond crystallography for accurate structure-factor determination at an X-ray free-electron laser. IUCRJ 2021; 8:905-920. [PMID: 34804544 PMCID: PMC8562661 DOI: 10.1107/s2052252521008046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 05/25/2023]
Abstract
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables essentially radiation-damage-free macromolecular structure determination using microcrystals that are too small for synchrotron studies. However, SFX experiments often require large amounts of sample in order to collect highly redundant data where some of the many stochastic errors can be averaged out to determine accurate structure-factor amplitudes. In this work, the capability of the Swiss X-ray free-electron laser (SwissFEL) was used to generate large-bandwidth X-ray pulses [Δλ/λ = 2.2% full width at half-maximum (FWHM)], which were applied in SFX with the aim of improving the partiality of Bragg spots and thus decreasing sample consumption while maintaining the data quality. Sensitive data-quality indicators such as anomalous signal from native thaumatin micro-crystals and de novo phasing results were used to quantify the benefits of using pink X-ray pulses to obtain accurate structure-factor amplitudes. Compared with data measured using the same setup but using X-ray pulses with typical quasi-monochromatic XFEL bandwidth (Δλ/λ = 0.17% FWHM), up to fourfold reduction in the number of indexed diffraction patterns required to obtain similar data quality was achieved. This novel approach, pink-beam SFX, facilitates the yet underutilized de novo structure determination of challenging proteins at XFELs, thereby opening the door to more scientific breakthroughs.
Collapse
Affiliation(s)
- Karol Nass
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Camila Bacellar
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Claudio Cirelli
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Florian Dworkowski
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Yaroslav Gevorkov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Daniel James
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | | | - Demet Kekilli
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Gregor Knopp
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Isabelle Martiel
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Dmitry Ozerov
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Alexandra Tolstikova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Laura Vera
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Tobias Weinert
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Jörg Standfuss
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Sven Reiche
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | | |
Collapse
|
9
|
Salmaso V, Jain S, Jacobson KA. Purinergic GPCR transmembrane residues involved in ligand recognition and dimerization. Methods Cell Biol 2021; 166:133-159. [PMID: 34752329 PMCID: PMC8620127 DOI: 10.1016/bs.mcb.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
We compare the GPCR-ligand interactions and highlight important residues for recognition in purinergic receptors-from both X-ray crystallographic and cryo-EM structures. These include A1 and A2A adenosine receptors, and P2Y1 and P2Y12 receptors that respond to ADP and other nucleotides. These receptors are important drug discovery targets for immune, metabolic and nervous system disorders. In most cases, orthosteric ligands are represented, except for one allosteric P2Y1 antagonist. This review catalogs the residues and regions that engage in contacts with ligands or with other GPCR protomers in dimeric forms. Residues that are in proximity to bound ligands within purinergic GPCR families are correlated. There is extensive conservation of recognition motifs between adenosine receptors, but the P2Y1 and P2Y12 receptors are each structurally distinct in their ligand recognition. Identifying common interaction features for ligand recognition within a receptor class that has multiple structures available can aid in the drug discovery process.
Collapse
Affiliation(s)
- Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
10
|
Do HN, Akhter S, Miao Y. Pathways and Mechanism of Caffeine Binding to Human Adenosine A 2A Receptor. Front Mol Biosci 2021; 8:673170. [PMID: 33987207 PMCID: PMC8111288 DOI: 10.3389/fmolb.2021.673170] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Abstract
Caffeine (CFF) is a common antagonist to the four subtypes of adenosine G-protein-coupled receptors (GPCRs), which are critical drug targets for treating heart failure, cancer, and neurological diseases. However, the pathways and mechanism of CFF binding to the target receptors remain unclear. In this study, we have performed all-atom-enhanced sampling simulations using a robust Gaussian-accelerated molecular dynamics (GaMD) method to elucidate the binding mechanism of CFF to human adenosine A2A receptor (A2AAR). Multiple 500–1,000 ns GaMD simulations captured both binding and dissociation of CFF in the A2AAR. The GaMD-predicted binding poses of CFF were highly consistent with the x-ray crystal conformations with a characteristic hydrogen bond formed between CFF and residue N6.55 in the receptor. In addition, a low-energy intermediate binding conformation was revealed for CFF at the receptor extracellular mouth between ECL2 and TM1. While the ligand-binding pathways of the A2AAR were found similar to those of other class A GPCRs identified from previous studies, the ECL2 with high sequence divergence serves as an attractive target site for designing allosteric modulators as selective drugs of the A2AAR.
Collapse
Affiliation(s)
- Hung N Do
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Sana Akhter
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
11
|
Subramanian M, Kielar C, Tsushima S, Fahmy K, Oertel J. DNA-Mediated Stack Formation of Nanodiscs. Molecules 2021; 26:1647. [PMID: 33809519 PMCID: PMC8000961 DOI: 10.3390/molecules26061647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
Membrane-scaffolding proteins (MSPs) derived from apolipoprotein A-1 have become a versatile tool in generating nano-sized discoidal membrane mimetics (nanodiscs) for membrane protein research. Recent efforts have aimed at exploiting their controlled lipid protein ratio and size distribution to arrange membrane proteins in regular supramolecular structures for diffraction studies. Thereby, direct membrane protein crystallization, which has remained the limiting factor in structure determination of membrane proteins, would be circumvented. We describe here the formation of multimers of membrane-scaffolding protein MSP1D1-bounded nanodiscs using the thiol reactivity of engineered cysteines. The mutated positions N42 and K163 in MSP1D1 were chosen to support chemical modification as evidenced by fluorescent labeling with pyrene. Minimal interference with the nanodisc formation and structure was demonstrated by circular dichroism spectroscopy, differential light scattering and size exclusion chromatography. The direct disulphide bond formation of nanodiscs formed by the MSP1D1_N42C variant led to dimers and trimers with low yield. In contrast, transmission electron microscopy revealed that the attachment of oligonucleotides to the engineered cysteines of MSP1D1 allowed the growth of submicron-sized tracts of stacked nanodiscs through the hybridization of nanodisc populations carrying complementary strands and a flexible spacer.
Collapse
Affiliation(s)
- Madhumalar Subramanian
- Biophysics Department, Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany; (M.S.); (C.K.); (S.T.)
- Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - Charlotte Kielar
- Biophysics Department, Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany; (M.S.); (C.K.); (S.T.)
| | - Satoru Tsushima
- Biophysics Department, Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany; (M.S.); (C.K.); (S.T.)
| | - Karim Fahmy
- Biophysics Department, Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany; (M.S.); (C.K.); (S.T.)
- Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - Jana Oertel
- Biophysics Department, Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany; (M.S.); (C.K.); (S.T.)
| |
Collapse
|
12
|
The Specificity of Downstream Signaling for A 1 and A 2AR Does Not Depend on the C-Terminus, Despite the Importance of This Domain in Downstream Signaling Strength. Biomedicines 2020; 8:biomedicines8120603. [PMID: 33322210 PMCID: PMC7764039 DOI: 10.3390/biomedicines8120603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Recent efforts to determine the high-resolution crystal structures for the adenosine receptors (A1R and A2AR) have utilized modifications to the native receptors in order to facilitate receptor crystallization and structure determination. One common modification is a truncation of the unstructured C-terminus, which has been utilized for all the adenosine receptor crystal structures obtained to date. Ligand binding for this truncated receptor has been shown to be similar to full-length receptor for A2AR. However, the C-terminus has been identified as a location for protein-protein interactions that may be critical for the physiological function of these important drug targets. We show that variants with A2AR C-terminal truncations lacked cAMP-linked signaling compared to the full-length receptor constructs transfected into mammalian cells (HEK-293). In addition, we show that in a humanized yeast system, the absence of the full-length C-terminus affected downstream signaling using a yeast MAPK response-based fluorescence assay, though full-length receptors showed native-like G-protein coupling. To further study the G protein coupling, we used this humanized yeast platform to explore coupling to human-yeast G-protein chimeras in a cellular context. Although the C-terminus was essential for Gα protein-associated signaling, chimeras of A1R with a C-terminus of A2AR coupled to the A1R-specific Gα (i.e., Gαi1 versus Gαs). This surprising result suggests that the C-terminus is important in the signaling strength, but not specificity, of the Gα protein interaction. This result has further implications in drug discovery, both in enabling the experimental use of chimeras for ligand design, and in the cautious interpretation of structure-based drug design using truncated receptors.
Collapse
|