1
|
Anthuparambil ND, Timmermann S, Dargasz M, Retzbach S, Senft MD, Begam N, Ragulskaya A, Paulus M, Zhang F, Westermeier F, Sprung M, Schreiber F, Gutt C. Salt induced slowdown of kinetics and dynamics during thermal gelation of egg-yolk. J Chem Phys 2024; 161:055102. [PMID: 39105556 DOI: 10.1063/5.0219004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
We investigated the effect of the NaCl concentration (0.3-2M) on the structure and dynamics of hen egg yolk at room temperature and during thermal gelation at temperatures in the range of 66-90 °C utilizing low-dose x-ray photon correlation spectroscopy in ultra-small angle x-ray scattering geometry. With an increase in the salt concentration, we observe progressive structural and dynamic changes at room temperature, indicating the disruption of yolk components such as yolk-granules and yolk-plasma proteins. Temperature- and salt-dependent structural and dynamic investigations suggest a delay in the gel formation and aggregation of yolk low-density lipoproteins with increasing ionic strength. However, the time-temperature superposition relationship observed in all samples suggests an identical mechanism underlying protein aggregation-gelation with a temperature-dependent reaction rate. The sol-gel transition time extracted from kinetic and dynamic information follows Arrhenius's behavior, and the activation energy (460 kJ/mol) is found to be independent of the salt concentration.
Collapse
Affiliation(s)
| | | | | | - Sebastian Retzbach
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Maximilian D Senft
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
- Department of Physics, Banaras Hindu University, Varanasi 221005, India
| | | | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | | | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, 57072 Siegen, Germany
| |
Collapse
|
2
|
He H, Liang H, Chu M, Jiang Z, de Pablo JJ, Tirrell MV, Narayanan S, Chen W. Transport coefficient approach for characterizing nonequilibrium dynamics in soft matter. Proc Natl Acad Sci U S A 2024; 121:e2401162121. [PMID: 39042671 PMCID: PMC11295068 DOI: 10.1073/pnas.2401162121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/16/2024] [Indexed: 07/25/2024] Open
Abstract
Nonequilibrium states in soft condensed matter require a systematic approach to characterize and model materials, enhancing predictability and applications. Among the tools, X-ray photon correlation spectroscopy (XPCS) provides exceptional temporal and spatial resolution to extract dynamic insight into the properties of the material. However, existing models might overlook intricate details. We introduce an approach for extracting the transport coefficient, denoted as [Formula: see text], from the XPCS studies. This coefficient is a fundamental parameter in nonequilibrium statistical mechanics and is crucial for characterizing transport processes within a system. Our method unifies the Green-Kubo formulas associated with various transport coefficients, including gradient flows, particle-particle interactions, friction matrices, and continuous noise. We achieve this by integrating the collective influence of random and systematic forces acting on the particles within the framework of a Markov chain. We initially validated this method using molecular dynamics simulations of a system subjected to changes in temperatures over time. Subsequently, we conducted further verification using experimental systems reported in the literature and known for their complex nonequilibrium characteristics. The results, including the derived [Formula: see text] and other relevant physical parameters, align with the previous observations and reveal detailed dynamical information in nonequilibrium states. This approach represents an advancement in XPCS analysis, addressing the growing demand to extract intricate nonequilibrium dynamics. Further, the methods presented are agnostic to the nature of the material system and can be potentially expanded to hard condensed matter systems.
Collapse
Affiliation(s)
- HongRui He
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL60439
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Heyi Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Miaoqi Chu
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL60439
| | - Zhang Jiang
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL60439
| | - Juan J. de Pablo
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL60439
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Matthew V. Tirrell
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL60439
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Suresh Narayanan
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL60439
| | - Wei Chen
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL60439
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| |
Collapse
|
3
|
Czajka T, Neuhaus C, Alfken J, Stammer M, Chushkin Y, Pontoni D, Hoffmann C, Milovanovic D, Salditt T. Lipid vesicle pools studied by passive X-ray microrheology. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:123. [PMID: 38060069 PMCID: PMC10703982 DOI: 10.1140/epje/s10189-023-00375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Vesicle pools can form by attractive interaction in a solution, mediated by proteins or divalent ions such as calcium. The pools, which are alternatively also denoted as vesicle clusters, form by liquid-liquid phase separation (LLPS) from an initially homogeneous solution. Due to the short range liquid-like order of vesicles in the pool or cluster, the vesicle-rich phase can also be regarded as a condensate, and one would like to better understand not only the structure of these systems, but also their dynamics. The diffusion of vesicles, in particular, is expected to change when vesicles are arrested in a pool. Here we investigate whether passive microrheology based on X-ray photon correlation spectroscopy (XPCS) is a suitable tool to study model systems of artificial lipid vesicles exhibiting LLPS, and more generally also other heterogeneous biomolecular fluids. We show that by adding highly scattering tracer particles to the solution, valuable information on the single vesicle as well as collective dynamics can be inferred. While the correlation functions reveal freely diffusing tracer particles in solutions at low CaCl[Formula: see text] concentrations, the relaxation rate [Formula: see text] shows a nonlinear dependence on [Formula: see text] at a higher concentration of around 8 mM CaCl[Formula: see text], characterised by two linear regimes with a broad cross-over. We explain this finding based on arrested diffusion in percolating vesicle clusters.
Collapse
Affiliation(s)
- Titus Czajka
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Charlotte Neuhaus
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Jette Alfken
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Moritz Stammer
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Yuriy Chushkin
- European Synchrotron Radiation Facility, 38043, Grenoble Cedex 9, France
| | - Diego Pontoni
- European Synchrotron Radiation Facility, 38043, Grenoble Cedex 9, France
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
4
|
Anthuparambil ND, Girelli A, Timmermann S, Kowalski M, Akhundzadeh MS, Retzbach S, Senft MD, Dargasz M, Gutmüller D, Hiremath A, Moron M, Öztürk Ö, Poggemann HF, Ragulskaya A, Begam N, Tosson A, Paulus M, Westermeier F, Zhang F, Sprung M, Schreiber F, Gutt C. Exploring non-equilibrium processes and spatio-temporal scaling laws in heated egg yolk using coherent X-rays. Nat Commun 2023; 14:5580. [PMID: 37696830 PMCID: PMC10495384 DOI: 10.1038/s41467-023-41202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
The soft-grainy microstructure of cooked egg yolk is the result of a series of out-of-equilibrium processes of its protein-lipid contents; however, it is unclear how egg yolk constituents contribute to these processes to create the desired microstructure. By employing X-ray photon correlation spectroscopy, we investigate the functional contribution of egg yolk constituents: proteins, low-density lipoproteins (LDLs), and yolk-granules to the development of grainy-gel microstructure and microscopic dynamics during cooking. We find that the viscosity of the heated egg yolk is solely determined by the degree of protein gelation, whereas the grainy-gel microstructure is controlled by the extent of LDL aggregation. Overall, protein denaturation-aggregation-gelation and LDL-aggregation follows Arrhenius-type time-temperature superposition (TTS), indicating an identical mechanism with a temperature-dependent reaction rate. However, above 75 °C TTS breaks down and temperature-independent gelation dynamics is observed, demonstrating that the temperature can no longer accelerate certain non-equilibrium processes above a threshold value.
Collapse
Affiliation(s)
- Nimmi Das Anthuparambil
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
- Department Physik, Universität Siegen, 57072, Siegen, Germany.
| | - Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | | | - Marvin Kowalski
- Department Physik, Universität Siegen, 57072, Siegen, Germany
| | | | - Sebastian Retzbach
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Maximilian D Senft
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | | | - Dennis Gutmüller
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Anusha Hiremath
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Marc Moron
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Özgül Öztürk
- Department Physik, Universität Siegen, 57072, Siegen, Germany
| | | | | | - Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Amir Tosson
- Department Physik, Universität Siegen, 57072, Siegen, Germany
| | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, 57072, Siegen, Germany.
| |
Collapse
|
5
|
Switalski K, Fan J, Li L, Chu M, Sarnello E, Jemian P, Li T, Wang Q, Zhang Q. Direct measurement of Stokes-Einstein diffusion of Cowpea mosaic virus with 19 µs-resolved XPCS. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1429-1435. [PMID: 36345751 PMCID: PMC9641563 DOI: 10.1107/s1600577522008402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Brownian motion of Cowpea mosaic virus (CPMV) in water was measured using small-angle X-ray photon correlation spectroscopy (SA-XPCS) at 19.2 µs time resolution. It was found that the decorrelation time τ(Q) = 1/DQ2 up to Q = 0.091 nm-1. The hydrodynamic radius RH determined from XPCS using Stokes-Einstein diffusion D = kT/(6πηRH) is 43% larger than the geometric radius R0 determined from SAXS in the 0.007 M K3PO4 buffer solution, whereas it is 80% larger for CPMV in 0.5 M NaCl and 104% larger in 0.5 M (NH4)2SO4, a possible effect of aggregation as well as slight variation of the structures of the capsid resulting from the salt-protein interactions.
Collapse
Affiliation(s)
- Kacper Switalski
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Jingyu Fan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Luxi Li
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Miaoqi Chu
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Erik Sarnello
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Pete Jemian
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Qingteng Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| |
Collapse
|