1
|
Hernández JG, Ardila-Fierro KJ, Gómez S, Stolar T, Rubčić M, Topić E, Hadad CZ, Restrepo A. The Role of Crystalline Intermediates in Mechanochemical Cyclorhodation Reactions Elucidated by in-Situ X-ray Powder Diffraction and Computation. Chemistry 2023; 29:e202301290. [PMID: 37347170 DOI: 10.1002/chem.202301290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/23/2023]
Abstract
The occurrence of crystalline intermediates in mechanochemical reactions might be more widespread than previously assumed. For example, a recent study involving the acetate-assisted C-H activation of N-Heterocycles with [Cp*RhCl2 ]2 by ball milling revealed the formation of transient cocrystals between the reagents prior to the C-H activation step. However, such crystalline intermediates were only observed through stepwise intervallic ex-situ analysis, and their exact role in the C-H activation process remained unclear. In this study, we monitored the formation of discrete, stoichiometric cocrystals between benzo[h]quinoline and [Cp*RhCl2 ]2 by ball milling using in-situ synchrotron X-ray powder diffraction. This continuous analysis revealed an initial cocrystal that transformed into a second crystalline form. Computational studies showed that differences in noncovalent interactions made the [Cp*RhCl2 ]2 unit in the later-appearing cocrystal more reactive towards NaOAc. This demonstrated the advantage of cocrystal formation before the acetate-assisted metalation-deprotonation step, and how the net cooperative action of weak interactions between the reagents in mechanochemical experiments can lead to stable supramolecular assemblies, which can enhance substrate activation under ball-milling conditions. This could explain the superiority of some mechanochemical reactions, such as acetate-assisted C-H activation, compared to their solution-based counterparts.
Collapse
Affiliation(s)
- José G Hernández
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia
| | - Karen J Ardila-Fierro
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia
| | - Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Tomislav Stolar
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - Mirta Rubčić
- Faculty of Science Department of Chemistry, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - Edi Topić
- Faculty of Science Department of Chemistry, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - Cacier Z Hadad
- Instituto de Química, Facultad de Ciencias Exactas y Naturales Universidad de Antioquia, UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Albeiro Restrepo
- Instituto de Química, Facultad de Ciencias Exactas y Naturales Universidad de Antioquia, UdeA, Calle 70 No 52-21, Medellín, Colombia
| |
Collapse
|
2
|
Ardila-Fierro KJ, Rubčić M, Hernández JG. Cocrystal Formation Precedes the Mechanochemically Acetate-Assisted C-H Activation with [Cp*RhCl 2 ] 2. Chemistry 2022; 28:e202200737. [PMID: 35274769 DOI: 10.1002/chem.202200737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 12/16/2022]
Abstract
This work reports the experimentally studied mechanochemical formation of rhodacycles by ball milling pyridine- and quinoline-derived substrates and [Cp*RhCl2 ]2 in the presence of NaOAc. Ex-situ analysis of the mechanochemical reactions using powder X-ray diffraction (PXRD), solid-state UV-vis spectroscopy and ATR-FTIR spectroscopy revealed the formation of unexpected cocrystals between the substrates and the rhodium dimer prior to the C-H activation step. This sequence of events differs from the generally accepted steps in solution in which cleavage of [Cp*RhCl2 ]2 is initiated by acetate ions. Additionally, the mechanochemical approach enabled the synthesis of the six-membered rhodacycle [Cp*Rh(2-benzilpyridine)Cl], a metal complex repeatedly reported as inaccessible in solution. Altogether, the results of this investigation clarify some of the fundamental aspects of mechanochemical cyclometallations.
Collapse
Affiliation(s)
- Karen J Ardila-Fierro
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - Mirta Rubčić
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a, 10000, Zagreb, Croatia
| | - José G Hernández
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia.,Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia
| |
Collapse
|
3
|
|