1
|
Tsukamoto T. Recent advances in atomic cluster synthesis: a perspective from chemical elements. NANOSCALE 2024; 16:10533-10550. [PMID: 38651597 DOI: 10.1039/d3nr06522g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Despite its potential significance, "cluster chemistry" remains a somewhat marginalized topic within the chemistry field. However, atomic clusters with their unusual and unique structures and properties represent a novel material group situated between molecules and nanoparticles or solid matter, judging from both scientific standpoints and historical backgrounds. Surveying an entire material group, including all substances that can be regarded as a cluster, is essential for establishing cluster chemistry as a more prominent chemistry field. This review aims to provide a comprehensive understanding by categorizing, summarizing, and reviewing clusters, focusing on their constituent elements in the periodic table. However, because numerous disparate synthetic processes have been individually developed to date, their straightforward and uniform classification is a challenging task. As such, comprehensively reviewing this field from a chemical composition viewpoint presents significant obstacles. It should be therefore noted that despite adopting a synthetic method-based classification in this review, the discussions presented herein could entail inaccuracies. Nevertheless, this unorthodox viewpoint unfolds a new scientific perspective which accentuates the common ground between different development processes by emphasizing the lack of a definitive border between their synthetic methods and material groups, thus opening new avenues for cementing cluster chemistry as an attractive chemistry field.
Collapse
Affiliation(s)
- Takamasa Tsukamoto
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan.
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- JST PRESTO, Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
2
|
Rodriguez VG, Culbertson HJ, Sigmon GE, Burns PC. Electrochemistry of Uranyl Peroxide Solutions during Electrospray Ionization. Inorg Chem 2023; 62:4456-4466. [PMID: 36888551 DOI: 10.1021/acs.inorgchem.2c03904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The ionization of uranyl triperoxide monomer, [(UO2)(O2)3]4- (UT), and uranyl peroxide cage cluster, [(UO2)28(O2)42 - x(OH)2x]28- (U28), was studied with electrospray ionization mass spectrometry (ESI-MS). Experiments including tandem mass spectrometry with collision-induced dissociation (MS/CID/MS), use of natural water and D2O as solvent, and use of N2 and SF6 as nebulizer gases, provide insight into the mechanisms of ionization. The U28 nanocluster under MS/CID/MS with collision energies ranging from 0 to 25 eV produced the monomeric units UOx- (x = 3-8) and UOxHy- (x = 4-8, y = 1, 2). UT under ESI conditions yielded the gas-phase ions UOx- (x = 4-6) and UOxHy- (x = 4-8, y = 1-3). Mechanisms that produce the observed anions in the UT and U28 systems are: (a) gas-phase combinations of uranyl monomers in the collision cell upon fragmentation of U28, (b) reduction-oxidation resulting from the electrospray process, and (c) ionization of surrounding analytes, creating reactive oxygen species that then coordinate to uranyl ions. The electronic structures of anions UOx- (x = 6-8) were investigated using density functional theory (DFT).
Collapse
Affiliation(s)
- Virginia G Rodriguez
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Heather J Culbertson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ginger E Sigmon
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Peter C Burns
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
3
|
Yakubovich OV, Kiriukhina GV, Simonov SV, Volkov AS, Dimitrova OV. (Na,Li) 3(Cl,OH)[Cu 3OAl(PO 4) 3]: a first salt-inclusion aluminophosphate oxocuprate with a new type of crystal structure. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2023; 79:24-31. [PMID: 36748895 DOI: 10.1107/s2052520622011696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/06/2022] [Indexed: 01/14/2023]
Abstract
The synthesis and characterization of a first salt-inclusion aluminophosphate oxocuprate, (Na,Li)3(Cl,OH)[Cu3OAl(PO4)3], obtained as single crystals, is reported. A novel phase, with a strongly pseudo-orthorhombic structure, is described as a monoclinic crystal structure established by the study of a pseudomerohedric microtwin. It was investigated using scanning electron microscopy, microprobe analysis and low-temperature X-ray diffraction. The composite crystal structure represents an original framework assembled from Cu-centered polyhedra, AlO6 octahedra and PO4 tetrahedra with channels, which incorporate the Na/Li salt component [(Na,Li)3(Cl,OH)]2+ that ensures electroneutrality of the compound. Layers of strongly corrugated chains of Cu-centered octahedra with shared edges and linked by PO4 tetrahedra are shown to be topologically identical with the layers also built from Cu-centered polyhedra and AsO4/VO4 tetrahedra forming the crystal structure of a fumarolic mineral aleutite, (M0.5Cl)[Cu5O2(AsO4)(VO4)] [Siidra et al. (2019). MinMag, 83, 847-853]. `Sawtooth chains' and pairs of Cu-centered octahedra inherent in the title structure may be of interest in solid-state physics, engaging studies in the field of low-dimensional and frustrated magnetism.
Collapse
Affiliation(s)
- Olga V Yakubovich
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russian Federation
| | - Galina V Kiriukhina
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russian Federation
| | - Sergey V Simonov
- The Institute of Solid State Physics RAS, Akademika Osip`yana st 2, Chernogolovka, Moscow region 142432, Russian Federation
| | - Anatoly S Volkov
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russian Federation
| | - Olga V Dimitrova
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russian Federation
| |
Collapse
|
4
|
Stepenshchikov DG, Aksenov SM. ON THE EXISTENCE OF FULLERENES WITH A GIVEN SYMMETRY GROUP. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622120198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Banaru AM, Banaru DA, Aksenov SM. Informational Complexity of the Generating Subset of Crystallographic Groups. CRYSTALLOGR REP+ 2022. [DOI: 10.1134/s106377452203004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Pascoite Minerals and Potential Application of NMR Spectroscopy. MINERALS 2022. [DOI: 10.3390/min12080980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The 20 minerals encompassing the pascoite family of decavanadate isopolyanion-containing [V10O28]6− minerals include a few minerals, such as rakovanite, that have been described as containing a protonated decavanadate anion. Rakovanite was originally assigned the formula Na3[H3V10O28]•15H2O and now is redefined with an ideal formula (NH4)3Na3[V10O28]•12H2O. Nuclear magnetic resonance (NMR) and particularly 51V NMR spectroscopy is an informative method used to describe the protonation state and speciation in both solid and solution states of materials in the chemical and life sciences. However, 51V NMR spectroscopy has not yet been used experimentally to distinguish the protonation state of the decavanadate ion of leaching solutions and thus contributing to the discussion regarding the controversial protonation states of decavanadate ions in gunterite, rakovanite, and nashite. In contrast, the morphology and crystal structure for apatites, vanadinite, pyromorphite, and mimetite was related to 207Pb NMR chemical shifts, assisting in describing the local environments of these minerals. NMR spectroscopy could be a useful method if used in the future for decavanadate-containing minerals. Currently, partial reduction of two Pascoite minerals (caseyite and nashite) is proposed and accordingly could now effectively be investigated using a different magnetic resonance technique, EPR spectroscopy.
Collapse
|
7
|
Kiriukhina G, Yakubovich O, Shvanskaya L, Volkov A, Dimitrova O, Simonov S, Volkova O, Vasiliev A. A Novel Mineral-like Copper Phosphate Chloride with a Disordered Guest Structure: Crystal Chemistry and Magnetic Properties. MATERIALS 2022; 15:ma15041411. [PMID: 35207951 PMCID: PMC8876330 DOI: 10.3390/ma15041411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023]
Abstract
Novel copper phosphate chloride has been obtained under middle-temperature hydrothermal conditions. Its crystal structure was established based on the low-temperature X-ray diffraction data: Na2Li0.75(Cs,K)0.5[Cu5(PO4)4Cl]·3.5(H2O,OH), sp. gr. C2/m, a = 19.3951(8) Å, b = 9.7627(3) Å, c = 9.7383(4) Å, β = 99.329(4)°, T = 150 K, MoKα (λ = 0.71073 Å), R = 0.049. The crystal structure includes tetrameric copper clusters as the main building blocks, which are built of four CuO4Cl pyramids sharing apical Cl vertices. The clusters are combined through phosphate groups and additional copper-centered polyhedra to form two mostly ordered periodic layers. Between the layers and inside the framework channels, alkali ions, H2O molecules, or OH groups are statistically distributed. Na2Li0.75(Cs,K)0.5[Cu5(PO4)4Cl]·3.5(H2O,OH) is a synthetic modification of a sampleite-polymorph of the lavendulan mineral group and represents a new member in a mero-plesiotype series of copper phosphates and arsenates, for which the crystal structures contain two-periodic [Cu4X(TO4)4]∞ modules (T = As, P; X = Cl, O). Magnetically, this phase exhibits the phase transition at TC = 6.5 K, below which it possesses a weak ferromagnetic moment.
Collapse
Affiliation(s)
- Galina Kiriukhina
- Faculty of Geology, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.K.); (O.Y.); (L.S.); (A.V.); (O.D.)
- Institute of Experimental Mineralogy RAS, 142432 Chernogolovka, Russia
| | - Olga Yakubovich
- Faculty of Geology, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.K.); (O.Y.); (L.S.); (A.V.); (O.D.)
| | - Larisa Shvanskaya
- Faculty of Geology, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.K.); (O.Y.); (L.S.); (A.V.); (O.D.)
- Quantum Functional Materials Laboratory, National University of Science and Technology “MISiS”, 119049 Moscow, Russia;
| | - Anatoly Volkov
- Faculty of Geology, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.K.); (O.Y.); (L.S.); (A.V.); (O.D.)
| | - Olga Dimitrova
- Faculty of Geology, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.K.); (O.Y.); (L.S.); (A.V.); (O.D.)
| | - Sergey Simonov
- Institute of Solid State Physics RAS, 142432 Chernogolovka, Russia;
| | - Olga Volkova
- Quantum Functional Materials Laboratory, National University of Science and Technology “MISiS”, 119049 Moscow, Russia;
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Institute of Physics and Technology, Ural Federal University, 620002 Ekaterinburg, Russia
| | - Alexander Vasiliev
- Quantum Functional Materials Laboratory, National University of Science and Technology “MISiS”, 119049 Moscow, Russia;
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Institute of Physics and Technology, Ural Federal University, 620002 Ekaterinburg, Russia
- Correspondence:
| |
Collapse
|
8
|
Abstract
Abstract
We present an illustrative analysis of the complexity of a crystal structure based on the application of Shannon’s entropy formula in the form of Krivovichev’s complexity measures and extended according to the contributions of distinct discrete probability distributions derived from the atomic numbers and the Wyckoff multiplicities and arities of the atoms and sites constituting the crystal structure, respectively. The results of a full crystallographic complexity partition analysis for the intermetallic phase Mo3Al2C, a compound of intermediate structural complexity, are presented, with all calculations performed in detail. In addition, a partial analysis is discussed for the crystal structures of α- and β-quartz.
Collapse
Affiliation(s)
- Wolfgang Hornfeck
- Institute of Physics of the Academy of Sciences of the Czech Republic , Na Slovance 2, 182 21 Praha 8 , Czech Republic
| |
Collapse
|
9
|
Information Entropy in Chemistry: An Overview. ENTROPY 2021; 23:e23101240. [PMID: 34681964 PMCID: PMC8534366 DOI: 10.3390/e23101240] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
Basic applications of the information entropy concept to chemical objects are reviewed. These applications deal with quantifying chemical and electronic structures of molecules, signal processing, structural studies on crystals, and molecular ensembles. Recent advances in the mentioned areas make information entropy a central concept in interdisciplinary studies on digitalizing chemical reactions, chemico-information synthesis, crystal engineering, as well as digitally rethinking basic notions of structural chemistry in terms of informatics.
Collapse
|
10
|
Yakubovich OV, Shvanskaya LV, Kiriukhina GV, Volkov AS, Dimitrova OV, Vasiliev AN. Hydrothermal Synthesis and a Composite Crystal Structure of Na 6Cu 7BiO 4(PO 4) 4[Cl,(OH)] 3 as a Candidate for Quantum Spin Liquid. Inorg Chem 2021; 60:11450-11457. [PMID: 34264636 DOI: 10.1021/acs.inorgchem.1c01459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel sodium bismuth oxo-cuprate phosphate chloride, Na6Cu7BiO4(PO4)4[Cl2.23(OH)0.77], containing square-kagomé layers of Cu2+ has been synthesized by hydrothermal techniques. The compound crystallizes in the tetragonal space group P4/nmm, a = 10.0176(4), c = 10.8545(6), Z = 2, V = 1089.3(1) Å3, R1 = 0.021, wR = 0.053, S = 1.32. Its composite crystal structure includes [O4Cu6Bi]7+ layers, which are formed by the clusters of oxygen-centered tetrahedra [OCu3Bi]. These positively charged two periodic fragments are intercalated in a negatively charged [CuNa6Cl3(PO4)4]7- matrix built by Na-centered polyhedra, PO4 tetrahedra, and CuO4Cl pyramids. The composite character of the crystal structure of Na6Cu7BiO4(PO4)4[Cl2.23(OH)0.77], as well as the way of its self-assembly, are discussed in close connection with the sulfohalite Na6ClF(SO4)2 salt. It is shown that the "host-guest" model of the formation of the tetragonal Na6Cu7BiO4(PO4)4[Cl2.23(OH)0.77] phase is due to the group-subgroup symmetry relation with the cubic crystal structure of mineral sulfohalite and is also supported by the crystallization condition in excess sodium chloride. The magnetic subsystem of Na6Cu7BiO4(PO4)4[Cl2.23(OH)0.77] is represented by a dense square-kagomé network of 2Cu1 and 4Cu2 ions, decorated with weakly bonded Cu3 ions. Measurements of magnetization and heat capacity indicate the absence of long-range order up to 2 K, which makes this compound a candidate for a highly demanded spin liquid.
Collapse
Affiliation(s)
| | - Larisa V Shvanskaya
- Lomonosov Moscow State University, Moscow 119991, Russia.,National University of Science and Technology "MISiS", Moscow 119049, Russia
| | - Galina V Kiriukhina
- Lomonosov Moscow State University, Moscow 119991, Russia.,Institute of Experimental Mineralogy, RAS, Chernogolovka, Moscow Region 142432, Russia
| | | | | | - Alexander N Vasiliev
- Lomonosov Moscow State University, Moscow 119991, Russia.,National University of Science and Technology "MISiS", Moscow 119049, Russia
| |
Collapse
|
11
|
Abstract
Structural complexity measures based on Shannon information entropy are widely used for inorganic crystal structures. However, the application of these parameters for molecular crystals requires essential modification since atoms in inorganic compounds usually possess more degrees of freedom. In this work, a novel scheme for the calculation of complexity parameters (HmolNet, HmolNet,tot) for molecular crystals is proposed as a sum of the complexity of each molecule, the complexity of intermolecular contacts, and the combined complexity of both. This scheme is tested for several molecular crystal structures.
Collapse
|
12
|
Natrophosphate, Arctic Mineral and Nuclear Waste Phase: Structure Refinements and Chemical Variability. MINERALS 2021. [DOI: 10.3390/min11020186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The crystal structures of natural (Mt. Koashva, Khibiny alkaline massif, Kola Peninsula, Russian Arctic) and synthetic (obtained from an aqueous solution of sodium phosphate and sodium fluoride (1:1) by evaporation at room temperature (RT)) natrophosphate, Na7(PO4)2F·19H2O, have been investigated using single-crystal X-ray diffraction analysis. Natrophosphate and its synthetic analogue are cubic, Fd-3c, a = 27.6942(3) Å (natrophosphate at RT), a = 27.6241(4) Å (natrophosphate at 100 K), a = 28.1150(12) Å (synthetic analogue at RT), a = 27.9777(7) Å (synthetic analogue at 100 K). The crystal structure is based upon the super-octahedral [Na6(H2O)18F]5+ polycationic complexes consisting of six edge-linked Na6(OH2)5F octahedra sharing one common fluorine vertex. The A site is statistically occupied by Na and H2O with the prevalence of H2O with the refined occupancy factors O:Na equal to 0.53:0.47 for natrophosphate and 0.75:0.25 for its synthetic analogue. The coordination of the A site in synthetic natrophosphate is enlarged compared to the natural sample, which agrees well with its higher occupancy by H2O molecules. The general formula of natrophosphates can be written as Na6+xHxF(PO4)2·(19 + x)H2O, where x = 0–1. The chemical variability of natrophosphate allows to explain the discrepancies in its solubility reported by different authors. The information-based parameters of structural complexity are equal to 3.713 bit/atom and 2109.177 bit/cell that allows to classify natrophosphate as a structurally very complex mineral.
Collapse
|
13
|
Traustason H, Bell NL, Caranto K, Auld DC, Lockey DT, Kokot A, Szymanowski JES, Cronin L, Burns PC. Reactivity, Formation, and Solubility of Polyoxometalates Probed by Calorimetry. J Am Chem Soc 2020; 142:20463-20469. [PMID: 33203207 DOI: 10.1021/jacs.0c10133] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Room temperature calorimetry methods were developed to describe the energy landscapes of six polyoxometalates (POMs), Li-U24, Li-U28, K-U28, Li/K-U60, Mo132, and Mo154, in terms of three components: enthalpy of dissolution (ΔHdiss), enthalpy of formation of aqueous POMs (ΔHf,(aq)), and enthalpy of formation of POM crystals (ΔHf,(c)). ΔHdiss is controlled by a combination of cation solvation enthalpy and the favorability of cation interactions with binding sites on the POM. In the case of the four uranyl peroxide POMs studied, clusters with hydroxide bridges have lower ΔHf,(aq) and are more stable than those containing only peroxide bridges. In general for POMs, the combination of calorimetric results and synthetic observations suggest that spherical topologies may be more stable than wheel-like clusters, and ΔHf,(aq) can be accurately estimated using only ΔHf,(c) values owing to the dominance of the clusters in determining the energetics of POM crystals.
Collapse
Affiliation(s)
- Hrafn Traustason
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Nicola L Bell
- School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom
| | - Kiana Caranto
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - David C Auld
- School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom
| | - David T Lockey
- School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom
| | - Alex Kokot
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jennifer E S Szymanowski
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Leroy Cronin
- School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom
| | - Peter C Burns
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
14
|
Bindi L, Nespolo M, Krivovichev SV, Chapuis G, Biagioni C. Producing highly complicated materials. Nature does it better. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:106501. [PMID: 32721933 DOI: 10.1088/1361-6633/abaa3a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Through the years, mineralogical studies have produced a tremendous amount of data on the atomic arrangement and mineral properties. Quite often, structural analysis has led to elucidate the role played by minor components, giving interesting insights into the physico-chemical conditions of mineral crystallization and allowing the description of unpredictable structures that represented a body of knowledge critical for assessing their technological potentialities. Using such a rich database, containing many basic acquisitions, further steps became appropriate and possible, into the directions of more advanced knowledge frontiers. Some of these frontiers assume the name of modularity, complexity, aperiodicity, and matter organization at not conventional levels, and will be discussed in this review.
Collapse
Affiliation(s)
- Luca Bindi
- Dipartimento di Scienze della Terra, Università degli Studi di Firenze, via La Pira 4, I-50121 Firenze, Italy
| | | | | | | | | |
Collapse
|