1
|
Zhang X, Guo H, Li X, Tao W, Ma X, Zhang Y, Xiao W. Single-cell expression and immune infiltration analysis of polyamine metabolism in breast cancer. Discov Oncol 2024; 15:666. [PMID: 39549127 PMCID: PMC11569334 DOI: 10.1007/s12672-024-01524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Breast cancer is one of the most threatening women health diseases worldwide and its molecular heterogeneity offers a range of response to therapy. The role of polyamine metabolism is receiving increasing attention. Polyamine metabolism not only plays an important role in the occurrence and development of breast cancer, but also interacts with tumor immune microenvironment. In this work, we applied single-cell RNA-sequencing (scRNA-seq) and systems immunological approaches to interrogate immune cell infiltration gene-to-gene co-expressions in the bulk tumor transcriptomes of breast cancer. We acquired breast cancer sample data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), evaluated the infiltration status of 22 immune cell types using CIBERSORTx tool, respectively. By leveraging the Retrospective Breast sample of various technologies including gene expression and methylation, we identified 46 breast cancer proliferation-associated co-expression modules using weighted gene coexpression network analysis (WGCNA) approach along with machine learning models which in turn delineated single cell level expressions features that these selected module possessed. We observed substantial cellular heterogeneity in the breast cancer microenvironment, where lineage-specific gene expression patterns were highly associated with tumor progression. Moreover, we also identified the gene modules correlated with immune cell infiltration level that could function as regulators in response to tumors for immune therapy. Moreover, risk scores were correlated with immune cell function in different patient groups defined by high- and low-risk. The findings of this study shed a new light upon molecular classification prognostic assessment and personalized treatment in breast cancer.
Collapse
Affiliation(s)
- Xiliang Zhang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Shapingba District, No. 83 Xinqiao Main Street, Chongqing, 400037, China
| | - Hanjie Guo
- Department of General Surgery, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Xiaolong Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Shapingba District, No. 83 Xinqiao Main Street, Chongqing, 400037, China
| | - Wei Tao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Shapingba District, No. 83 Xinqiao Main Street, Chongqing, 400037, China
| | - Xiaoqing Ma
- Department of General Surgery, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yuxing Zhang
- Department of General Surgery, The Sixth Medical Center of PLA General Hospital, 6 Fucheng Road, Haidian, Beijing, 100048, People's Republic of China.
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Shapingba District, No. 83 Xinqiao Main Street, Chongqing, 400037, China.
| |
Collapse
|
2
|
Drozdzal P, Manszewski T, Gilski M, Brzezinski K, Jaskolski M. Right-handed Z-DNA at ultrahigh resolution: a tale of two hands and the power of the crystallographic method. Acta Crystallogr D Struct Biol 2023; 79:133-139. [PMID: 36762859 PMCID: PMC9912920 DOI: 10.1107/s2059798322011937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/16/2022] [Indexed: 01/21/2023] Open
Abstract
The self-complementary L-d(CGCGCG)2 purine/pyrimidine hexanucleotide was crystallized in complex with the polyamine cadaverine and potassium cations. Since the oligonucleotide contained the enantiomeric 2'-deoxy-L-ribose, the Z-DNA duplex is right-handed, as confirmed by the ultrahigh-resolution crystal structure determined at 0.69 Å resolution. Although the X-ray diffraction data were collected at a very short wavelength (0.7085 Å), where the anomalous signal of the P and K atoms is very weak, the signal was sufficiently outstanding to clearly indicate the wrong hand when the structure was mistakenly solved assuming the presence of 2'-deoxy-D-ribose. The electron density clearly shows the entire cadaverinium dication, which has an occupancy of 0.53 and interacts with one Z-DNA duplex. The K+ cation, with an occupancy of 0.32, has an irregular coordination sphere that is formed by three OP atoms of two symmetry-related Z-DNA duplexes and one O5' hydroxyl O atom, and is completed by three water sites, one of which is twofold disordered. The K+ site is complemented by a partial water molecule, the hydrogen bonds of which have the same lengths as the K-O bonds. The sugar-phosphate backbone assumes two conformations, but the base pairs do not show any sign of disorder.
Collapse
Affiliation(s)
- Pawel Drozdzal
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz Manszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Miroslaw Gilski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | | | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
3
|
Li K, Yatsunyk LA, Neidle S. Machine learning shows torsion angle preferences in left-handed and right-handed quadruplex DNAs. Biophys J 2022; 121:4874-4881. [PMID: 35999813 PMCID: PMC9808593 DOI: 10.1016/j.bpj.2022.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 01/07/2023] Open
Abstract
Left-handed G quadruplexes (LHG4) have been recently discovered as a new class of G quadruplexes. The biological functions of LHG4s are still unknown, but they share a striking resemblance to Z-DNA in their helicity and jagged phosphate backbone. To further understand structural features of the LHG4s that define their left handedness, we have employed human-interpretable machine-learning methods to classify right- and left-handed G4s purely based on torsional angle analysis. Our results reveal the importance of the α, β, δ, and χ angles in left-handed structuring across both Z-DNAs and LHG4s. Our analysis may serve as the first step to understanding the conditions of formation for LHG4s and their potential biological relevance.
Collapse
Affiliation(s)
- Kevin Li
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania
| | - Liliya A Yatsunyk
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania
| | - Stephen Neidle
- UCL School of Pharmacy, University College London, London, United Kingdom.
| |
Collapse
|
4
|
Bansal A, Kaushik S, Kukreti S. Non-canonical DNA structures: Diversity and disease association. Front Genet 2022; 13:959258. [PMID: 36134025 PMCID: PMC9483843 DOI: 10.3389/fgene.2022.959258] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
A complete understanding of DNA double-helical structure discovered by James Watson and Francis Crick in 1953, unveil the importance and significance of DNA. For the last seven decades, this has been a leading light in the course of the development of modern biology and biomedical science. Apart from the predominant B-form, experimental shreds of evidence have revealed the existence of a sequence-dependent structural diversity, unusual non-canonical structures like hairpin, cruciform, Z-DNA, multistranded structures such as DNA triplex, G-quadruplex, i-motif forms, etc. The diversity in the DNA structure depends on various factors such as base sequence, ions, superhelical stress, and ligands. In response to these various factors, the polymorphism of DNA regulates various genes via different processes like replication, transcription, translation, and recombination. However, altered levels of gene expression are associated with many human genetic diseases including neurological disorders and cancer. These non-B-DNA structures are expected to play a key role in determining genetic stability, DNA damage and repair etc. The present review is a modest attempt to summarize the available literature, illustrating the occurrence of non-canonical structures at the molecular level in response to the environment and interaction with ligands and proteins. This would provide an insight to understand the biological functions of these unusual DNA structures and their recognition as potential therapeutic targets for diverse genetic diseases.
Collapse
Affiliation(s)
- Aparna Bansal
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Shikha Kaushik
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Rajdhani College, University of Delhi, New Delhi, India
| | - Shrikant Kukreti
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- *Correspondence: Shrikant Kukreti,
| |
Collapse
|